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This session was tested on MatCont7.0 with MATLAB2018b. It is devoted to the numerical
initialization and continuation of limit cycles in systems of autonomous ODEs depending on one
parameter

ẋ = f(x, α), x ∈ Rn, α ∈ R,

and detection of their bifurcations. We will also show how to start the continuation of a limit
cycle from the Hopf bifurcation and a doubled cycle from the period-doubling bifurcation.

1 Cycle initialization from a converging orbit

We consider again the Rössler system that was introduced in TUTORIAL I: ẋ = −y − z
ẏ = x+Ay
ż = Bx− Cz + xz,

(1)

where (x, y, z) are the phase variables, and (A,B,C) are the parameters.
Input system (1) in MatCont, generating the derivatives of order 1, 2 and 3 symbolically. We

start with computing by time integration an orbit, using the Starter and Integrator windows
presented in Figure 1.

Figure 1: The Starter and Integrator windows for the initial time integration.

The computed orbit is presented in the 3D-plot in Figure 2 in (x, y, z) - space within the region

−9 ≤ x ≤ 9, −9 ≤ y ≤ 9, −2 ≤ z ≤ 11.

It is visually clear that the orbit has converged to a (presumably stable) limit cycle. We select
the last point of the orbit using Select|Initial Point|Last Point|Select Point and clear the
Plot3D window.

It is readily seen that time integration from the selected point over a time interval 5 does not
close the orbit, see the Starter and Integrator windows in Figure 3, and the orbit displayed in
Figure 4.

Now perform a time integration over an interval 8 and check that it closes the limit cycle. This
implies that 8 is larger than the period of the limit cycle but smaller than twice that period, which
is the condition for starting the continuation of limit cycles from an orbit that is computed along
the limit cycle. That is why time integrations over an interval 5 or 500 are of no use.

2



-2

0

2

5

4z

6

5

y

8

0

10

x

0
-5 -5

Figure 2: 3D-plot of the computed orbit.

Figure 3: Starter and Integrator windows for time integration from a selected point on the
orbit.
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Figure 4: Computed orbit over an interval 5.

Now press Control|View Result and double-click at Select Cycle (we note that a single-
click at Select Cycle followed by clicking Select Point also works). This opens a small Choose
tolerance ... input window with two input fields. The top one allows to change the tolerance
for detecting a limit cycle along the orbit. The bottom one allows to change the number of mesh
intervals that will be used to discretize the limit cycle. Make sure that it is set to 40; the window
should now look like Figure 5.

Now press OK. The main MatCont window is then prepared for the continuation of a limit
cycle, see Figure 6(left). In the corresponding Starter window activate the parameter A and the
Period. Also, check all singularity monitoring boxes as in Figure 6(right). We note that the initial
value of the Period is estimated by the initializer and equal to 6.27..., indeed a value between 5
and 8.

Figure 5: Input window opened by pressing the Select Cycle button.

In the corresponding Continuer window only default values are to be used. Open a Numeric
window and check Multipliers in its Layout menu for the multipliers of the periodic orbits to
be displayed in the Numeric window during continuation.

Press Compute|Forward. The continuation of limit cycles now starts. Observe that there is
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Figure 6: The main MatCont window when prepared to start the continuation of limit cycles.

period-doubling bifurcation for A = 0.27191773. The Plot3D window and the Numeric window
are displayed in Figures 7. Observe that at the PD-point there is a multiplier equal to −1 (i.e.,
absolute value 1 and argument equal to 1800).

In the MATLAB command line the output

Period Doubling (period = 6.148967e+00, parameter = 2.719177e-01)

Normal form coefficient = -4.283828e-03

is generated, including the normal form coefficient of the PD bifurcation.
Stop the computation and end the session by closing all output windows.

Figure 7: The Plot3D and the Numeric windows at the period-doubling bifurcation.

5



2 Fold and Neimark-Sacker bifurcations of cycles in a chem-
ical model

Consider the following chemical model by Steinmetz and Larter:
Ȧ = −k1ABX − k3ABY + k7 − k−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y.

(2)

We will fix all parameters but k7 and study periodic solutions (limit cycles) of (2) when this
parameter varies.

2.1 System specification

Specify a new ODE system – say StLar – in MatCont

A’=-k1*A*B*X-k3*A*B*Y+k7-km7*A

B’=-k1*A*B*X-k3*A*B*Y+k8

X’=k1*A*B*X-2*k2*X^2+2*k3*A*B*Y-k4*X+k6

Y’=-k3*A*B*Y+2*k2*X^2-k5*Y

where (A,B,X,Y) are the coordinates and (k1,k2,k3,k4,k5,k6,k7,km7,k8) are the parameters.
Use (default) t for time and generate symbolical derivatives of order 1, 2 and 3.

2.2 Fold bifurcation of limit cycles

2.2.1 Continuation of an equilibrium

We will continue an equilibrium of (2) and detect its Hopf bifurcation, from which the continuation
of a limit cycle can be started.

Input Type|Initial point|Equilibrium and Type|Curve|Equilibrium in the main Mat-
Cont window.

Input the following numerical data in the appeared Starter window:

A 31.78997

B 1.45468

X 0.01524586

Y 0.1776113

k1 0.1631021

k2 1250

k3 0.046875

k4 20

k5 1.104

k6 0.001

k7 4.235322

km7 0.1175

k8 0.5

These values correspond to an unstable equilibrium (A,B,X, Y ) in the system. Activate the
parameter k7.

Open Window/Output|Numeric and change its appearance via the Layout menu. Namely,
check Eigenvalues to be also shown in the window.

Use Window/Output|Graphic|2D plot to open the corresponding window and select the
coordinates (A,B) as abscissa and ordinate, respectively, with the visibility limits:
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Abscissa: 32 38

Ordinate: 0 4

respectively.
Start Compute|Forward. The equilibrium curve will be continued and you get a Hopf bifur-

cation point labeled by H. The message in the MATLAB Command Window

label = H , x = ( 34.808899 1.328517 0.015246 0.177611 4.590046 )

First Lyapunov coefficient = 1.527549e-02

at k7 = 4.590046 . . . indicates a subcritical Hopf bifurcation. Indeed, there are two eigenvalues
of the equilibrium with Re λ1,2 ≈ 0 at this parameter value visible in the Numeric window.
The critical frequency Im λ1 6= 0, while the first Lyapunov coefficient is positive. Thus, there
should exist an unstable limit cycle, bifurcating from the equilibrium. Resume computations and
terminate them when the curve leaves the graphic window.

For later use, rename the computed curve via Select|Curve|Rename into Equilibrium(+).

2.2.2 Cycle continuation

Click Select|Initial point|Hopf|Select Point to select the H: Hopf point in the Equilibrium(+)
curve as initial point. The Starter and Continuer windows for the continuation of the limit cycle
from the Hopf point will appear.

Ensure that all boxes in the Monitor Singularities field of the Starter window are checked.
Increase the MaxStepsize to 1.0 in the Continuer window to allow larger steps along the curve
and set MaxNumPoints to 50. The Starter and Continuer windows should look like in Figure 8.

Change the layout of the Numeric window via Numeric|Layout by selecting all Multipliers
to be shown. The absolute values (modulae) and arguments in angular grads will be displayed.

Compute|Forward will produce a family of cycles with a cycle limit point labeled by LPC at
k7 = 4.74838 . . .. The Numeric window corresponding to LPC is shown in Figure 9. Recall that
exact numerical values could deviate slightly.

In the MATLAB Command Window, the following message appears:

Limit point cycle (period = 1.036108e+01, parameter = 4.748384e+00)

Normal form coefficient = -2.714838e-01

The critical cycle has (approximately) a double multiplier µ = 1 and the normal form coefficient
is nonzero. Thus, the limit cycle manifold has a fold here. Resume the computations. The
continuation algorithm will automatically follow the second (stable) cycle branch after the LPC
point. Verify this by looking at the nontrivial multipliers in the Numeric window (|µ| < 1 for all
such multipliers). The computations produce Figure 10.

To visualize LPC in another way, open another Plot2D window and select parameter k7 and
Period of the cycle as abscissa and ordinate, respectively. Use the visibility limits:

Abscissa: 4.5 4.8

Ordinate: 7 12

After MatCont|Redraw Diagram in the Plot2D window, you will get a curve with a limit
point, clearly indicating the presence of two limit cycles with different periods for k7 < 4.74838
near LPC (see Figure 11). Close both Plot2D windows.

2.3 Neimark-Sacker bifurcation

2.3.1 Backward continuation of the equilibrium

Load the first computed equilibrium curve Equilibrium(+) in the Data Browser window ap-
pearing after the Select|Curve command. Be sure to select Type|Curve|Equilibrium for
continuation.
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Figure 8: The Starter and Continuer windows for the cycle continuation.

Figure 9: The Numeric window at the LPC-point.
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Figure 10: The family of limit cycles bifurcating from the Hopf point H: LPC is a fold bifurcation
of the cycle.
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Figure 11: Period of the cycle versus k7.
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Open a new Plot2D window but select now B and X as abscissa and ordinate, respectively,
with the visibility limits:

Abscissa: 25 27

Ordinate: 0 0.03

Compute|Backward and Extend several times until you get another Hopf bifurcation at
k7 = 0.712475 . . . with the message

label = H , x = ( 1.808301 25.573303 0.015246 0.177611 0.712475 )

First Lyapunov coefficient = -2.371880e-02

in the MATLAB Command Window. The first Lyapunov coefficient is negative now. This means
that a stable limit cycle bifurcates from the equilibrium, when it loses stability. Resume compu-
tations and terminate them when the equilibrium curve leaves the graphic window. Rename the
computed curve into Equilibrium(-).

2.3.2 Cycle continuation

Select the Hopf point in the curve Equilibrium(-) as initial. MatCont will prepare to con-
tinue a limit cycle curve from the Hopf point (curve type H LC). Check all boxes in the Monitor

Singularities section of the Starter window. Activate k7 and the Period in the Starter
window. Set

MaxStepsize 1

MaxNumPoints 25

in the Continuer window. Check Multipliers to be shown in the Numeric window.
Click Compute|Forward to start the continuation of the limit cycle. At k7 = 0.716434 . . .

the message Neimark-Sacker indicates a torus bifurcation. In the MATLAB Command Window,
the following message appears:

Neimark-Sacker (period = 1.091213e+01, parameter = 7.164336e-01)

Normal form coefficient = -4.912065e-08.

Indeed, there are two complex multipliers with (approximately) |µ| = 1 and one trivial at µ = 1.
This can be seen in the Numeric window that stays open, see Figure 12. The normal form
coefficient is small but nonzero, indicating that a stable two-dimensional invariant torus bifurcates
from the limit cycle.

Resume computations further to see that after the NS-point the cycle becomes unstable (with
two multipliers satisfying |µ| > 1. You should get a family of limit cycles bifurcating from the
Hopf point as in Figure 13.

Close the Numeric and all output windows.

2.3.3 Dynamics on a stable torus

Click Select|Initial point... and select the NS: Neimark-Sacker point in the computed limit
cycle curve. The critical parameter values will be read in from the archive. Immediately after
that select Type|Initial point|Point and Type|Curve|Orbit. A point on the critical cycle will
thus be selected as the initial for orbit integration.

Increase slightly the value of the parameter k7 and perturb the initial point by altering the
value of B, namely set:

k7 0.7165

B 26.2

Change Method of integration to ode23s and alter
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Figure 12: The Numeric window at the NS-point.
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Figure 13: Family of limit cycles bifurcating from the second Hopf point.
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Interval 1000

Rel.Toletance 1e-6

Abs.Tolerance 1e-9

in the Integrator window.
To speed up visualization, click Options|Output Interval and set it to 1000, see Figure 14

Figure 14: Output Interval window.

Clear the graphic window and Compute|Forward followed by Compute|Extend. The in-
tegration will take some time. After a transient, the orbit will exhibit modulated oscillations with
two frequencies near the limit cycle. This is a motion on a stable two-dimensional torus born via
the Neimark-Sacker bifurcation, see Figure 15. Open another 2Dplot window with time t and
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Figure 15: Dynamics on a stable 2-torus.

coordinate B as abscissa and ordinate, with the visibility limits:

Abscissa: 1000 2000

Ordinate: 25.0 26.5

After MatCont|Redraw Curve, you will see the high-frequency oscillations with low-frequency
modulation as in Figure 16.

Restore the original setting (i.e., 1) of Options|Output Interval via the main MatCont
window.
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Figure 16: Modulated chemical oscillations.

3 Period-doubling bifurcation in an adaptive control model

Consider the following adaptive control system of Lur’e type ẋ = y,
ẏ = z,
ż = −αz − βy − x+ x2.

(3)

We will fix α = 1 and continue limit cycles of (3) using β as a bifurcation parameter.

3.1 System specification

As usual, define a new system in MatCont with the coordinates x,y,z, parameters alpha,beta,
and select derivatives of order 1, 2, and 3 to be generated symbolically.

3.2 Equilibrium continuation

Select Type|Initial point|Equilibrium and Type|Curve|Equilibrium. In the Starter win-
dow, set alpha equal to 1 and activate beta.

Open a Plot3D window and select beta,x and y as variables along the coordinate axes with
the visibility limits:

Abscissa: 0.4 1.2

Ordinate: -0.5 1.2

Applicate: -0.6 0.7

respectively.
Compute|Forward results in an equilibrium curve with a Hopf bifurcation (labeled H) de-

tected with the following message in the MATLAB Command Window:

label = H , x = ( 0.000000 0.000000 0.000000 1.000000 )

First Lyapunov coefficient = -3.000000e-01

The Hopf bifurcation occurs at β = 1 and is supercritical, thus generating a stable limit cycle.
Resume the continuation and eventually stop it, when the curve leaves the plotting region.
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3.3 Cycle continuation starting from the H-point

Click Control|View Result and double-click at the H: Hopf point. The Starter and Continuer
windows appear, corresponding to the limit cycle curve H LC. Make sure that beta and Period

are activated.
In the Starter window, use the number of mesh points ntst equal to 40 and check all boxes

in the Monitor Singularities field. In the Continuer window, set MaxStepsize to 0.7 and
MaxNumPoints to 80.

With Window/Output|Numeric, open a Numeric window and make the cycle Multipliers
visible by checking them in the Numeric|Layout menu.

Compute|Forward will produce a branch of limit cycles of increasing amplitude with two
period-doubling bifurcations (labeled PD). The Numeric windows at both PD bifurcations are
shown in Figures 17 and 18.

Figure 17: The Numeric window at the first PD bifurcation. The bifurcation parameter value is
β = 0.6273246 . . ..

Resume the computations at both PD points. The MATLAB Command Window will contain
the messages

Period Doubling (period = 8.386068e+00, parameter = 6.273245e-01)

Normal form coefficient = -3.405330e-03

Period Doubling (period = 9.864971e+00, parameter = 5.417461e-01)

Normal form coefficient = -7.655596e-04
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Figure 18: The Numeric window at the second PD bifurcation. The bifurcation parameter value
is β = 0.5417461 . . ..
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Figure 19: The cycle branch in system (3) rooted at the Hopf point. Two critical cycles undergoing
the period-doubling bifurcations are labeled by PD.

Figure 20: The cycle period near the homoclinic bifurcation.
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indicating that in both cases the normal form coefficients are negative, so that stable double-period
cycles are involved.

You get a cycle manifold shown in Figure 19. The period of the cycle rapidly increases when
β approaches βhom = 0.515489 . . .. To see this, open a Plot2D window (see Figure 20) with the
axes beta and Period and the plotting region

Abscissa: 0.51 0.53

Ordinate: 0.0 35.0

and apply MatCont|Redraw Curve.
Actually, the limit cycle approaches a homoclinic orbit to the second equilibrium (x, y, z) =

(1, 0, 0) of (3), which is a global bifurcation1. Below βhom no cycle exists. Near the homoclinic
bifurcation, the computation of the cycle and its multipliers becomes inaccurate. The loss of
accuracy can be seen in the Numeric window, where no multiplier close to 1 is present at the
last computed point.

3.4 Continuation of the double cycle from the PD-point

Using Select|Initial point, take the first PD: Period Doubling point in the computed above
curve as initial.

Adjust the Plot3D window by setting the visibility limits for beta as follows:

Abscissa: 0.5 0.63

1At β = βhom, this equilibrium is a saddle-focus with the saddle quantity σ < 0. Thus, according to Shilnikov’s
Theorem, from this homoclinic orbit only one limit cycle bifurcates - the one we computed.

Figure 21: The branch of stable doubled cycles connects two PD points.
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In the Starter window, set the number of mesh points ntst to 80, increase the amplitude to
0.005, and check only Branch Point of Cycles (BPC) in the Monitor Singularities section.

In the Continuer window, increase MaxTestIters to 30, and make sure that MaxStepsize

remains equal to 0.7.
Click Compute|Forward and continue the doubled cycle bifurcating from the first PD-point

at β = βPD,1. This cycle remains stable until at (approximately) β = βPD,2 a branching point
cycle (BPC) is detected. This is not surprising, since the PD-bifurcation for the original limit cycles
corresponds to a branching point for the doubled cycles. Stop computations at BPC, clear Plot3D
window and make MatCont|Redraw Curve to get Figure 21.

Exit MatCont.

4 Additional Problems

A. Study numerically limit cycles in the system ẋ = µx− y − xz,
ẏ = x+ µy,
ż = −z + y2 + x2z,

that is another model of a feedback control system.

B. Consider the following predator-prey model
ẋ = x− xy

1 + αx
,

ẏ = −y +
xy

1 + αx
− δy2.

1. Prove that the following polynomial system{
ẋ = x(1 + αx)− xy,
ẏ = −(y + δy2)(1 + αx) + xy,

(4)

has the same orbits in the positive quadrant as the original model. Derive an explicit
condition on (α, δ) for system (4) to have a positive equilibrium with one zero eigenvalue.
Derive a similar condition for (4) to have a positive equilibrium with a pair of purely
imaginary eigenvalues.

2. Introduce new variables {
ξ = lnx,
η = ln y,

in which the original system becomes:
ξ̇ = 1− exp(η)

1 + α exp(ξ)
,

η̇ = −1 +
exp(ξ)

1 + α exp(ξ)
− δ exp(η).

(5)

Fix α = 0.3 and study numerically limit cycles of (5), when the parameter δ varies.
Hint: Begin with finding an equilibrium at δ = 0.35 by integration.

3. Relate your analytical and numerical results.

C. Consider the following predator-double prey system: ẋ = x(2.4− x− 6y − 4z),
ẏ = y(β − x− y − 10z),
ż = −z(1− 0.25x− 4y + z),

modelling dynamics of two prey populations affected by a predator.
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1. Starting from β = 1.77, find its positive equilibrium by orbit integration.

2. Continue the equilibrium with respect to β until it exhibits a Hopf bifurcation.

3. Continue a limit cycle from the Hopf point and monitor the dependence of its period
upon β. Hint: Set ntst to a high value.

4. Plot the cycle at different period values and try to understand its asymptotic shape.
Hint: Compute and analyze the equilibria located on the coordinate planes.

D. Consider the famous Lorenz system ẋ = σ(−x+ y),
ẏ = rx− y − xz,
ż = −bz + xy,

with the standard parameter values σ = 10, b = 8
3 and r > 0. Use MatCont to analyse its

simplest limit cycles numerically.

1. Compute a critical parameter value rBP, at which the trivial equilibrium (0, 0, 0) under-
goes a symmetric pitchfork bifurcation.

2. Compute a critical parameter value rH, corresponding to a Hopf bifurcation of nontrivial
equilibria.

3. Continue the limit cycle born at the Hopf bifurcation with respect to r and find out
what happens to it. Plot the cycle period as function of r, and monitor stability.

4. Demonstrate by numerical integration that for r = 400 the system has a stable sym-
metric limit cycle and determine its period approximately. Continue this cycle with
respect to r and find the critical parameter value rBPC corresponding to a branch point
of cycles (symmetry breaking). Hint: Use the procedure to start LC continuation from
a simulation as done in Section 1.

Derive explicit formulas for rBP and rH as functions of (σ, b) and verify the numerical values
obtained with MatCont.
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