For each planar system below, construct its phase portrait numerically using the MATLAB tool pplane $7^{1}$ and then try to prove its essential features analytically.

## - Lotka-Volterra system

$$
\left\{\begin{array}{l}
\dot{x}=x-x y  \tag{1}\\
\dot{y}=-y+x y
\end{array}\right.
$$

where $x, y \geq 0$.
Hint: Introduce new variables $q=\ln x$ and $p=\ln y$ and prove that the resulting ( $q, p$ )-system is Hamiltonian.

- A system without cycles

$$
\left\{\begin{align*}
\dot{x} & =y,  \tag{2}\\
\dot{y} & =-x-y+x^{2} .
\end{align*}\right.
$$

- Reversible system

$$
\left\{\begin{array}{l}
\dot{x}=y,  \tag{3}\\
\dot{y}=x+x y-x^{3} .
\end{array}\right.
$$

Hint: Consider the transformation $(x, y, t) \rightarrow(-x, y,-t)$.

- A system with a nonsimple equilibrium

$$
\left\{\begin{align*}
\dot{x} & =x^{2}-y^{2}  \tag{4}\\
\dot{y} & =2 x y .
\end{align*}\right.
$$

Hint: The system is equivalent to one complex equation $\dot{z}=z^{2}$.

- A system with a saddle homoclinic orbit

$$
\left\{\begin{align*}
\dot{x} & =-x+2 y+x^{2}  \tag{5}\\
\dot{y} & =2 x-y-3 x^{2}+\frac{3}{2} x y
\end{align*}\right.
$$

Hint: The curve $x^{2}(1-x)-y^{2}=0$ is invariant.

[^0]
[^0]:    ${ }^{1}$ To use the tool, start MATLAB by selecting Start $\rightarrow$ All Programs $\rightarrow$ MATLAB $\rightarrow$ R2009a $\rightarrow$ MATLAB R2009a and enter pplane7 in the MATLAB Command Window.

