For each planar system below, construct its phase portrait numerically using the MATLAB tool $pplane7^1$ and then try to prove its essential features analytically.

• Lotka-Volterra system

$$\begin{cases} \dot{x} = x - xy, \\ \dot{y} = -y + xy, \end{cases}$$
(1)

where $x, y \ge 0$.

Hint: Introduce new variables $q = \ln x$ and $p = \ln y$ and prove that the resulting (q, p)-system is Hamiltonian.

• A system without cycles

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - y + x^2. \end{cases}$$
(2)

• Reversible system

$$\begin{cases} \dot{x} = y, \\ \dot{y} = x + xy - x^3. \end{cases}$$
(3)

Hint: Consider the transformation $(x, y, t) \rightarrow (-x, y, -t)$.

• A system with a nonsimple equilibrium

$$\begin{cases} \dot{x} = x^2 - y^2, \\ \dot{y} = 2xy. \end{cases}$$

$$\tag{4}$$

Hint: The system is equivalent to one complex equation $\dot{z} = z^2$.

• A system with a saddle homoclinic orbit

$$\begin{cases} \dot{x} = -x + 2y + x^2, \\ \dot{y} = 2x - y - 3x^2 + \frac{3}{2}xy. \end{cases}$$
(5)

Hint: The curve $x^2(1-x) - y^2 = 0$ is invariant.

¹To use the tool, start MATLAB by selecting Start \rightarrow All Programs \rightarrow MATLAB \rightarrow R2009a \rightarrow MATLAB R2009a and enter pplane7 in the MATLAB Command Window.