For each planar system below, construct its phase portrait for $\alpha=0$ and for small $\alpha<0$ and $\alpha>0$ using the MATLAB tool pplane 7^{1}. Identify the occuring bifurcation and try to support your conclusions by analytical arguments.

- A system with a global bifurcation in which a local bifurcation is involved

$$
\left\{\begin{array}{l}
\dot{x}=x\left(1-x^{2}-y^{2}\right)-y(1+\alpha+x), \tag{1}\\
\dot{y}=x(1+\alpha+x)+y\left(1-x^{2}-y^{2}\right) .
\end{array}\right.
$$

Hint: Introduce polar coordinates $x=r \cos \varphi, y=r \sin \varphi$.

- Rayleigh's equation

$$
\begin{equation*}
\ddot{x}+\dot{x}^{3}-2 \alpha \dot{x}+x=0 . \tag{2}
\end{equation*}
$$

Hint: Introduce $y=\dot{x}$ and rewrite the equation as a system of two differential equations.

- A system with a local bifurcation of a cycle

$$
\left\{\begin{array}{l}
\dot{x}=\left(\alpha-\frac{1}{4}\right) x-y+x\left(x^{2}+y^{2}\right)-x\left(x^{4}+2 x^{2} y^{2}+y^{4}\right), \tag{3}\\
\dot{y}=x+\left(\alpha-\frac{1}{4}\right) y+y\left(x^{2}+y^{2}\right)-y\left(x^{4}+2 x^{2} y^{2}+y^{4}\right) .
\end{array}\right.
$$

Hint: Introduce polar coordinates $x=r \cos \varphi, y=r \sin \varphi$.

- A system with a global bifurcation

$$
\left\{\begin{align*}
\dot{x} & =1-x^{2}-\alpha x y \tag{4}\\
\dot{y} & =x y+\alpha\left(1-x^{2}\right)
\end{align*}\right.
$$

- A system with another global bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=-x+2 y+x^{2}, \tag{5}\\
\dot{y}=(2-\alpha) x-y-3 x^{2}+\frac{3}{2} x y .
\end{array}\right.
$$

[^0]
[^0]: ${ }^{1}$ When appropriate, plot orbits approaching a saddle point by selecting Solutions \rightarrow Plot stable and unstable orbits in the pplane7 Display Window and then pointing at the saddle with the mouse.

