Degenerate Bogdanov-Takens bifurcations in two and more dimensions

Yuri A. Kuznetsov

Utrecht University

Contents

\square REFERENCES
\square DEGENERATE BT BIFURCATIONS IN GENERIC PLANAR ODES

- NORMAL FORMS ON CENTER MANIFOLDS IN n-DIMENSIONAL ODES
- OPEN QUESTIONS

REFERENCES

- S.M. Baer, B.W. Kooi, Yu.A. Kuznetsov, and H.R. Thieme
"Multiparametric bifurcation analysis of a basic two-stage population model," SIAM J. Appl. Math. 66 (2006), 1339-1365
\square Yu.A. Kuznetsov "Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations." Int. J. Bifurcation \& Chaos 15 (2005), 3535-3546

degenterate bT birurcations in Planar odes

\square Classification of codim 3 BT points

- Bifurcations of a triple equilibrium with elliptic sector
\square Example: A basic two-stage population model

Classification of codim 3 BT points

\square Consider a generic smooth family of planar autonomous ODEs

$$
\dot{x}=f(x, \alpha), x \in \mathbb{R}^{2}, \alpha \in \mathbb{R}^{m} .
$$

Classification of codim 3 BT points

\square Consider a generic smooth family of planar autonomous ODEs

$$
\dot{x}=f(x, \alpha), x \in \mathbb{R}^{2}, \alpha \in \mathbb{R}^{m} .
$$

\square Suppose that $f(0,0)=0$ and $A=f_{x}(0,0)$ has one double zero
eigenvalue with the Jordan block $\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$
This indicates a Bogdanov-Takens ($B T$) bifurcation.

Classification of codim 3 BT points

\square Consider a generic smooth family of planar autonomous ODEs

$$
\dot{x}=f(x, \alpha), x \in \mathbb{R}^{2}, \alpha \in \mathbb{R}^{m} .
$$

\square Suppose that $f(0,0)=0$ and $A=f_{x}(0,0)$ has one double zero eigenvalue with the Jordan block $\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$
This indicates a Bogdanov-Takens $(B T)$ bifurcation.
The ODE at the BT-bifurcation is formally smoothly equivalent to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1}, \\
\dot{w}_{1}=\sum_{k \geq 2}\left(a_{k} w_{0}^{k}+b_{k} w_{0}^{k-1} w_{1}\right) .
\end{array}\right.
$$

Classical codim 2 BT bifurcation

\square Versal unfolding when $a_{2} b_{2} \neq 0$ (Bogdanov[1975], Takens[1974]):

$$
\left\{\begin{array}{l}
\dot{\xi}_{0}=\xi_{1}, \\
\dot{\xi}_{1}=\beta_{1}+\beta_{2} \xi_{0}+a_{2} \xi_{0}^{2}+b_{2} \xi_{0} \xi_{1} .
\end{array}\right.
$$

Classical codim 2 BT bifurcation

\square Versal unfolding when $a_{2} b_{2} \neq 0$ (Bogdanov[1975], Takens[1974]):

$$
\left\{\begin{array}{l}
\dot{\xi}_{0}=\xi_{1}, \\
\dot{\xi}_{1}=\beta_{1}+\beta_{2} \xi_{0}+a_{2} \xi_{0}^{2}+b_{2} \xi_{0} \xi_{1} .
\end{array}\right.
$$

- The bifurcation diagram:

Codim 3 BT bifurcation with double equilibrium

- If $b_{2}=0$ but $a_{2} \neq 0$, the critical ODE is smoothly orbitally equivalent to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1} \\
\dot{w}_{1}=a_{2} w_{0}^{2}+b_{4} w_{0}^{3} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right)
\end{array}\right.
$$

Codim 3 BT bifurcation with double equilibrium

If $b_{2}=0$ but $a_{2} \neq 0$, the critical ODE is smoothly orbitally equivalent to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1} \\
\dot{w}_{1}=a_{2} w_{0}^{2}+b_{4} w_{0}^{3} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{array}\right.
$$

\square Versal unfolding when $b_{2}=0$ but $a_{2} b_{4} \neq 0$ (Berezovskaya \& Khibnik [1985], Dumortier, Roussarie \& Sotomayor [1987]):

$$
\left\{\begin{array}{l}
\dot{\xi}_{0}=\xi_{1} \\
\dot{\xi}_{1}=\beta_{1}+\beta_{2} \xi_{1}+\beta_{3} \xi_{0} \xi_{1}+a_{2} \xi_{0}^{2}+b_{4} \xi_{0}^{3} \xi_{1}
\end{array}\right.
$$

Codim 3 BT bifurcation with double equilibrium

If $b_{2}=0$ but $a_{2} \neq 0$, the critical ODE is smoothly orbitally equivalent to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1}, \\
\dot{w}_{1}=a_{2} w_{0}^{2}+b_{4} w_{0}^{3} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{array}\right.
$$

\square Versal unfolding when $b_{2}=0$ but $a_{2} b_{4} \neq 0$ (Berezovskaya \& Khibnik [1985], Dumortier, Roussarie \& Sotomayor [1987]):

$$
\left\{\begin{array}{l}
\dot{\xi}_{0}=\xi_{1} \\
\dot{\xi}_{1}=\beta_{1}+\beta_{2} \xi_{1}+\beta_{3} \xi_{0} \xi_{1}+a_{2} \xi_{0}^{2}+b_{4} \xi_{0}^{3} \xi_{1}
\end{array}\right.
$$

\square The bifurcation diagram includes a neutral saddle homoclinic and a degenerate Andronov-Hopf (Bautin) bifurcation curves.

Codim 3 BT bifurcation with triple equilibrium $\left(b_{2}>0\right)$

\square If $a_{2}=0$ but $b_{2} a_{3} \neq 0$, the critical ODE is smoothly orbitally equivalent with $b_{3}^{\prime}=b_{3}-\frac{3 b_{2} a_{4}}{5 a_{3}}$ to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1} \\
\dot{w}_{1}=a_{3} w_{0}^{3}+b_{2} w_{0} w_{1}+b_{3}^{\prime} w_{0}^{2} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{array}\right.
$$

Codim 3 BT bifurcation with triple equilibrium $\left(b_{2}>0\right)$

\square If $a_{2}=0$ but $b_{2} a_{3} \neq 0$, the critical ODE is smoothly orbitally equivalent with $b_{3}^{\prime}=b_{3}-\frac{3 b_{2} a_{4}}{5 a_{3}}$ to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1}, \\
\dot{w}_{1}=a_{3} w_{0}^{3}+b_{2} w_{0} w_{1}+b_{3}^{\prime} w_{0}^{2} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{array}\right.
$$

- If $a_{3}>0$ the origin is a topological saddle. If $a_{3}<0, b_{2}^{2}+8 a_{3}<0$ and $b_{3}^{\prime} \neq 0$, the origin is a topological focus. If $a_{3}<0$ and $b_{2}^{2}+8 a_{3}>0$, the origin has one elliptic sector.

Codim 3 BT bifurcation with triple equilibrium $\left(b_{2}>0\right)$

\square If $a_{2}=0$ but $b_{2} a_{3} \neq 0$, the critical ODE is smoothly orbitally equivalent with $b_{3}^{\prime}=b_{3}-\frac{3 b_{2} a_{4}}{5 a_{3}}$ to

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1}, \\
\dot{w}_{1}=a_{3} w_{0}^{3}+b_{2} w_{0} w_{1}+b_{3}^{\prime} w_{0}^{2} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{array}\right.
$$

- If $a_{3}>0$ the origin is a topological saddle. If $a_{3}<0, b_{2}^{2}+8 a_{3}<0$ and $b_{3}^{\prime} \neq 0$, the origin is a topological focus. If $a_{3}<0$ and $b_{2}^{2}+8 a_{3}>0$, the origin has one elliptic sector.

■ "Versal" unfolding in all cases (Dumortier, Roussarie, Sotomayor \& Żoląadek [1991]):

Unieresisieit Utrecht $\quad \dot{\xi}_{1}=\beta_{1}+\beta_{2} \xi_{0}+\beta_{3} \xi_{1}+a_{3} \xi_{0}^{3}+b_{2} \xi_{0} \xi_{1}+b_{3}^{\prime} \xi_{0}^{2} \xi_{1}$.

Normal forms with \mathbb{Z}_{2}-symmetry

- In symmeric systems, degenerate BT bifurcations have smaller codimensions.

Normal forms with \mathbb{Z}_{2}-symmetry

\square In symmeric systems, degenerate BT bifurcations have smaller codimensions.
\square The \mathbb{Z}_{2}-symmetry implies that certain coefficients in the critical normal form vanish, i.e.

$$
\left\{\begin{array}{l}
\dot{w}_{0}=w_{1} \\
\dot{w}_{1}=a_{3} w_{0}^{3}+b_{3} w_{0}^{2} w_{1}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right)
\end{array}\right.
$$

which leads to unfoldings like

$$
\left\{\begin{array}{l}
\dot{\xi}_{0}=\xi_{1}, \\
\dot{\xi}_{1}=\beta_{1} \xi_{0}+\beta_{2} \xi_{1}+a_{3} \xi_{0}^{3}+b_{3} \xi_{0}^{2} \xi_{1},
\end{array}\right.
$$

provided $a_{3} b_{3} \neq 0$ (Carr [1981])

Bifurcations of a triple equilibrium with elliptic sector

\square Truncated and scaled critical normal form:

$$
\left\{\begin{array}{l}
\dot{\xi}=\eta \\
\dot{\eta}=\beta \xi \eta+\epsilon_{1} \xi^{3}+\epsilon_{2} \xi^{2} \eta
\end{array}\right.
$$

where $\epsilon_{1}= \pm 1, \epsilon_{2}= \pm 1$, and $\beta>0$.

Bifurcations of a triple equilibrium with elliptic sector

\square Truncated and scaled critical normal form:

$$
\left\{\begin{array}{l}
\dot{\xi}=\eta \\
\dot{\eta}=\beta \xi \eta+\epsilon_{1} \xi^{3}+\epsilon_{2} \xi^{2} \eta
\end{array}\right.
$$

where $\epsilon_{1}= \pm 1, \epsilon_{2}= \pm 1$, and $\beta>0$.
\square Saddle case: $\epsilon_{1}=1$, any ϵ_{2} and β;
Focus case: $\epsilon_{1}=-1$ and $0<\beta<2 \sqrt{2}$; Elliptic case: $\epsilon_{1}=-1$ and $2 \sqrt{2}<\beta$.

Bifurcations of a triple equilibrium with elliptic sector

\square Truncated and scaled critical normal form:

$$
\left\{\begin{aligned}
\dot{\xi} & =\eta \\
\dot{\eta} & =\beta \xi \eta+\epsilon_{1} \xi^{3}+\epsilon_{2} \xi^{2} \eta
\end{aligned}\right.
$$

where $\epsilon_{1}= \pm 1, \epsilon_{2}= \pm 1$, and $\beta>0$.
\square Saddle case: $\epsilon_{1}=1$, any ϵ_{2} and β;
Focus case: $\epsilon_{1}=-1$ and $0<\beta<2 \sqrt{2}$;
Elliptic case: $\epsilon_{1}=-1$ and $2 \sqrt{2}<\beta$.

- Unfolding:

$$
\left\{\begin{array}{l}
\dot{\xi}=\eta \\
\dot{\eta}=-\mu_{1}-\mu_{2} \xi+\nu \eta+\beta \xi \eta-\xi^{3}-\xi^{2} \eta
\end{array}\right.
$$

Local bifurcations: $\beta=3.175849820$

Local and global bifurcations: $\mu_{2}=0.1, \beta=3.175849820$

Schematic bifurcation diagram in the elliptic case

Elliptic versus focus case

\square The schematic bifurcation diagram differs drastically from the theoretical bifurcation diagram for the elliptic case given by Dumortier et al. [1991] who studied phase portraits in a fixed small neighborhood of the origin.

Elliptic versus focus case

\square The schematic bifurcation diagram differs drastically from the theoretical bifurcation diagram for the elliptic case given by Dumortier et al. [1991] who studied phase portraits in a fixed small neighborhood of the origin.
\square It turns out that generic two-parameter slices in the elliptic case are topologically equivalent to those in the focus case.

Elliptic versus focus case

\square The schematic bifurcation diagram differs drastically from the theoretical bifurcation diagram for the elliptic case given by Dumortier et al. [1991] who studied phase portraits in a fixed small neighborhood of the origin.
\square It turns out that generic two-parameter slices in the elliptic case are topologically equivalent to those in the focus case.

- However, the inner limit cycle demonstrates rapid amplitude changes ("canard-like" behavior) near the bifurcation curve T_{c}.

Elliptic versus focus case

- The schematic bifurcation diagram differs drastically from the theoretical bifurcation diagram for the elliptic case given by Dumortier et al. [1991] who studied phase portraits in a fixed small neighborhood of the origin.
- It turns out that generic two-parameter slices in the elliptic case are topologically equivalent to those in the focus case.
- However, the inner limit cycle demonstrates rapid amplitude changes ("canard-like" behavior) near the bifurcation curve T_{c}.
- The "big" homoclinic orbit to the neutral saddle (point F) shrinks not to the origin of the phase plane, but to the boundary of the elliptic sector that has a finite size in the unfolding.

Universiteit Utrecht

A basic two-stage population model

\square The juvenile-adult model (Kostova, Li \& Friedman [1999]):

$$
\left\{\begin{aligned}
\frac{d L}{d t} & =\frac{\mu}{m}(g(y) y-m L-f(L) L) \\
\frac{d y}{d t} & =f(L) L-y
\end{aligned}\right.
$$

where $f(L)=e^{-L}, g(y)=e^{(1 / b)(a-y)}$.

A basic two-stage population model

\square The juvenile-adult model (Kostova, Li \& Friedman [1999]):

$$
\left\{\begin{aligned}
\frac{d L}{d t} & =\frac{\mu}{m}(g(y) y-m L-f(L) L) \\
\frac{d y}{d t} & =f(L) L-y
\end{aligned}\right.
$$

where $f(L)=e^{-L}, g(y)=e^{(1 / b)(a-y)}$.

- For fixed $b>0$, there are $\mu=\mu^{\sharp}, m=m^{\sharp}$, and $a=a^{\sharp}$, such that the model has a triple equilibrium (L^{\sharp}, y^{\sharp}) with double zero eigenvalue a degenerate $B T$ bifurcation occurs.

A basic two-stage population model

- The juvenile-adult model (Kostova, Li \& Friedman [1999]):

$$
\left\{\begin{aligned}
\frac{d L}{d t} & =\frac{\mu}{m}(g(y) y-m L-f(L) L) \\
\frac{d y}{d t} & =f(L) L-y
\end{aligned}\right.
$$

where $f(L)=e^{-L}, g(y)=e^{(1 / b)(a-y)}$.

- For fixed $b>0$, there are $\mu=\mu^{\sharp}, m=m^{\sharp}$, and $a=a^{\sharp}$, such that the model has a triple equilibrium $\left(L^{\sharp}, y^{\sharp}\right)$ with double zero eigenvalue a degenerate BT bifurcation occurs.
- For $b=2.2$, we have

$$
\begin{aligned}
& \mu^{\sharp}=0.01179614, m^{\sharp}=0.01192386945, a^{\sharp}=0.4492276697 \text { and } \\
& L^{\sharp}=1.513180178, y^{\sharp}=0.33321523 .
\end{aligned}
$$

$\operatorname{Codim} 4: \beta=2 \sqrt{2}$ at $b=b^{\natural}=1.7300228$

$b=2.2$

$b=1.5$

NORMAL FORMS ON CENTER MANIFOLDS IN n DIMIENSIONAL ODES

- Combined reduction/normalization technique

Explicit normal form coefficients

- Example: 6D-model of two coupled Faraday disk homopolar dynamos

Combined reduction/normalization technique

\square Critical ODE: $\dot{x}=F(x), x \in \mathbb{R}^{n}$, with Taylor expansion

$$
F(x)=A x+\frac{1}{2} B(x, x)+\frac{1}{6} C(x, x, x)+\frac{1}{24} D(x, x, x, x)+O\left(\|x\|^{5}\right) .
$$

Combined reduction/normalization technique

\square Critical ODE: $\dot{x}=F(x), x \in \mathbb{R}^{n}$,
with Taylor expansion

$$
F(x)=A x+\frac{1}{2} B(x, x)+\frac{1}{6} C(x, x, x)+\frac{1}{24} D(x, x, x, x)+O\left(\|x\|^{5}\right) .
$$

\square Eigenvectors: $q_{0,1}, p_{0,1} \in \mathbb{R}^{n}$,

$$
A q_{0}=0, A q_{1}=q_{0}, A^{T} p_{1}=0, A^{T} p_{0}=p_{1}
$$

with $\left\langle p_{0}, q_{0}\right\rangle=\left\langle p_{1}, q_{1}\right\rangle=1,\left\langle p_{0}, q_{1}\right\rangle=\left\langle p_{1}, q_{0}\right\rangle=0$.
\square Critical ODE: $\dot{x}=F(x), x \in \mathbb{R}^{n}$, with Taylor expansion

$$
F(x)=A x+\frac{1}{2} B(x, x)+\frac{1}{6} C(x, x, x)+\frac{1}{24} D(x, x, x, x)+O\left(\|x\|^{5}\right) .
$$

\square Eigenvectors: $q_{0,1}, p_{0,1} \in \mathbb{R}^{n}$,

$$
A q_{0}=0, A q_{1}=q_{0}, A^{T} p_{1}=0, A^{T} p_{0}=p_{1}
$$

with $\left\langle p_{0}, q_{0}\right\rangle=\left\langle p_{1}, q_{1}\right\rangle=1,\left\langle p_{0}, q_{1}\right\rangle=\left\langle p_{1}, q_{0}\right\rangle=0$.
Critical center manifold:

$$
x=H\left(w_{0}, w_{1}\right)=w_{0} q_{0}+w_{1} q_{1}+\sum_{2 \leq j+k \leq 4} \frac{1}{j!k!} h_{j k} w_{0}^{j} w_{1}^{k}+O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right)
$$

where $\left(w_{0}, w_{1}\right) \in \mathbb{R}^{2}, h_{j k} \in \mathbb{R}^{n}$.
Universiteit Utrecht
\square Critical normal form:

$$
\left\{\begin{aligned}
\dot{w}_{0}= & w_{1}, \\
\dot{w}_{1}= & a_{2} w_{0}^{2}+b_{2} w_{0} w_{1}+a_{3} w_{0}^{3}+b_{3} w_{0}^{2} w_{1}+a_{4} w_{0}^{4}+b_{4} w_{0}^{3} w_{1} \\
& +O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{aligned}\right.
$$

\square Critical normal form:

$$
\left\{\begin{aligned}
\dot{w}_{0}= & w_{1} \\
\dot{w}_{1}= & a_{2} w_{0}^{2}+b_{2} w_{0} w_{1}+a_{3} w_{0}^{3}+b_{3} w_{0}^{2} w_{1}+a_{4} w_{0}^{4}+b_{4} w_{0}^{3} w_{1} \\
& +O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{aligned}\right.
$$

Homological equation: $H_{w_{0}} \dot{w}_{0}+H_{w_{1}} \dot{w}_{1}=F\left(H\left(w_{0}, w_{1}\right)\right)$.
\square Critical normal form:

$$
\left\{\begin{aligned}
\dot{w}_{0}= & w_{1}, \\
\dot{w}_{1}= & a_{2} w_{0}^{2}+b_{2} w_{0} w_{1}+a_{3} w_{0}^{3}+b_{3} w_{0}^{2} w_{1}+a_{4} w_{0}^{4}+b_{4} w_{0}^{3} w_{1} \\
& +O\left(\left\|\left(w_{0}, w_{1}\right)\right\|^{5}\right) .
\end{aligned}\right.
$$

\square Homological equation: $H_{w_{0}} \dot{w}_{0}+H_{w_{1}} \dot{w}_{1}=F\left(H\left(w_{0}, w_{1}\right)\right)$.
Collecting the $w_{0}^{j} w_{1}^{k}$-terms give singular linear systems for $h_{j k}$. Since these systems must be solvable, their right-hand sides should be orthogonal to p_{1}. Some of these Fredholm conditions will define the normal form coefficients, others can be satisfied using a freedom in selecting solutions of singular linear systems appearing at lower-order terms.

Explicit normal form coefficients: Quadratic terms

\square The w_{0}^{2}-terms give

$$
A h_{20}=2 a_{2} q_{1}-B\left(q_{0}, q_{0}\right) .
$$

The Fredholm solvability condition for this system implies

$$
a_{2}=\frac{1}{2}\left\langle p_{1}, B\left(q_{0}, q_{0}\right)\right\rangle .
$$

Explicit normal form coefficients: Quadratic terms

\square The w_{0}^{2}-terms give

$$
A h_{20}=2 a_{2} q_{1}-B\left(q_{0}, q_{0}\right) .
$$

The Fredholm solvability condition for this system implies

$$
a_{2}=\frac{1}{2}\left\langle p_{1}, B\left(q_{0}, q_{0}\right)\right\rangle .
$$

\square The $w_{0} w_{1}$-terms give

$$
A h_{11}=b_{2} q_{1}+h_{20}-B\left(q_{0}, q_{1}\right)
$$

Its solvability leads to the expression

$$
b_{2}=\left\langle p_{1}, B\left(q_{0}, q_{1}\right)\right\rangle-\left\langle p_{1}, h_{20}\right\rangle .
$$

The w_{1}^{2}-terms give

$$
A h_{02}=2 h_{11}-B\left(q_{1}, q_{1}\right)
$$

Since

$$
\left\langle p_{1}, h_{11}\right\rangle=\left\langle p_{0}, h_{20}\right\rangle-\left\langle p_{0}, B\left(q_{0}, q_{1}\right)\right\rangle,
$$

we get
$\left\langle p_{1}, 2 h_{11}-B\left(q_{1}, q_{1}\right)\right\rangle=2\left\langle p_{0}, h_{20}\right\rangle-2\left\langle p_{0}, B\left(q_{0}, q_{1}\right)\right\rangle-\left\langle p_{1}, B\left(q_{1}, q_{1}\right)\right\rangle$.
The substitution $h_{20} \mapsto h_{20}+\delta_{0} q_{0}$ with a properly selected δ_{0} makes the right-hand side of this equation equal to zero. This does not affect the coefficient b_{2}, because $\left\langle p_{1}, q_{0}\right\rangle=0$.

Cubic terms

\square The w_{0}^{3}-terms give

$$
A h_{30}=6 q_{1} a_{3}+6 h_{11} a_{2}-3 B\left(h_{20}, q_{0}\right)-C\left(q_{0}, q_{0}, q_{0}\right) .
$$

Its solvability implies

$$
a_{3}=\frac{1}{6}\left\langle p_{1}, C\left(q_{0}, q_{0}, q_{0}\right)\right\rangle+\frac{1}{2}\left\langle p_{1}, B\left(h_{20}, q_{0}\right)\right\rangle-a_{2}\left\langle p_{1}, h_{11}\right\rangle .
$$

Cubic terms

\square The w_{0}^{3}-terms give

$$
A h_{30}=6 q_{1} a_{3}+6 h_{11} a_{2}-3 B\left(h_{20}, q_{0}\right)-C\left(q_{0}, q_{0}, q_{0}\right) .
$$

Its solvability implies

$$
a_{3}=\frac{1}{6}\left\langle p_{1}, C\left(q_{0}, q_{0}, q_{0}\right)\right\rangle+\frac{1}{2}\left\langle p_{1}, B\left(h_{20}, q_{0}\right)\right\rangle-a_{2}\left\langle p_{1}, h_{11}\right\rangle .
$$

- The $w_{0}^{2} w_{1}$-terms give
$A h_{21}=h_{30}+2 b_{3} q_{1}+2 a_{2} h_{02}+2 b_{2} h_{11}-2 B\left(h_{11}, q_{0}\right)-B\left(h_{20}, q_{1}\right)-C\left(q_{0}, q_{0}, q_{1}\right)$,
which solvability implies

$$
\begin{aligned}
b_{3} & =\frac{1}{2}\left\langle p_{1}, C\left(q_{0}, q_{0}, q_{1}\right)+2 B\left(h_{11}, q_{0}\right)+B\left(h_{20}, q_{1}\right)\right\rangle \\
& -\frac{1}{2}\left\langle p_{1}, h_{30}+2 a_{2} h_{02}+2 b_{2} h_{11}\right\rangle .
\end{aligned}
$$

- The singular linear systems resulting from the $w_{0} w_{1}^{2}$ - and w_{1}^{3}-terms,

$$
\begin{aligned}
& A h_{12}=2 h_{21}+2 b_{2} h_{02}-B\left(h_{02}, q_{0}\right)-2 B\left(h_{11}, q_{1}\right)-C\left(q_{0}, q_{1}, q_{1}\right) \\
& \text { and }
\end{aligned}
$$

$$
A h_{03}=3 h_{12}-3 B\left(h_{02}, q_{1}\right)-C\left(q_{1}, q_{1}, q_{1}\right),
$$

can be made solvable for any h_{02} by substituting $h_{30} \mapsto h_{30}+\delta_{1} q_{0}$ and then $h_{21} \mapsto h_{21}+\delta_{2} q_{0}$ with properly selected δ_{1} and δ_{2}. This does not change b_{3}.

Fourth-order terms

The w_{0}^{4}-terms imply

$$
\begin{aligned}
a_{4} & =\frac{1}{24}\left\langle p_{1}, D\left(q_{0}, q_{0}, q_{0}, q_{0}\right)+6 C\left(h_{20}, q_{0}, q_{0}\right)\right\rangle \\
& +\frac{1}{24}\left\langle p_{1}, 4 B\left(h_{30}, q_{0}\right)+3 B\left(h_{20}, h_{20}\right)\right\rangle \\
& -\frac{1}{2} a_{2}\left\langle p_{1}, h_{21}\right\rangle-a_{3}\left\langle p_{1}, h_{11}\right\rangle .
\end{aligned}
$$

Fourth-order terms

- The w_{0}^{4}-terms imply

$$
\begin{aligned}
a_{4} & =\frac{1}{24}\left\langle p_{1}, D\left(q_{0}, q_{0}, q_{0}, q_{0}\right)+6 C\left(h_{20}, q_{0}, q_{0}\right)\right\rangle \\
& +\frac{1}{24}\left\langle p_{1}, 4 B\left(h_{30}, q_{0}\right)+3 B\left(h_{20}, h_{20}\right)\right\rangle \\
& -\frac{1}{2} a_{2}\left\langle p_{1}, h_{21}\right\rangle-a_{3}\left\langle p_{1}, h_{11}\right\rangle .
\end{aligned}
$$

The $w_{0}^{3} w_{1}$-terms imply

$$
\begin{aligned}
b_{4} & =\frac{1}{6}\left\langle p_{1}, D\left(q_{0}, q_{0}, q_{0}, q_{1}\right)+3 C\left(h_{20}, q_{0}, q_{1}\right)+3 C\left(h_{11}, q_{0}, q_{0}\right)\right\rangle \\
& +\frac{1}{6}\left\langle p_{1}, 3 B\left(h_{21}, q_{0}\right)+3 B\left(h_{11}, h_{20}\right)+B\left(h_{30}, q_{1}\right)\right\rangle \\
& -\frac{1}{6}\left\langle p_{1}, h_{40}\right\rangle-\frac{1}{2} b_{2}\left\langle p_{1}, h_{21}\right\rangle \\
& -\left\langle p_{1}, a_{2} h_{12}+a_{3} h_{02}+b_{3} h_{11}\right\rangle .
\end{aligned}
$$

Some simplifications

\square Since $\left\langle p_{1}, h_{20}\right\rangle=-\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle$, we obtain

$$
b_{2}=\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle+\left\langle p_{1}, B\left(q_{0}, q_{1}\right)\right\rangle .
$$

Some simplifications

Since $\left\langle p_{1}, h_{20}\right\rangle=-\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle$, we obtain

$$
b_{2}=\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle+\left\langle p_{1}, B\left(q_{0}, q_{1}\right)\right\rangle .
$$

Since $\left\langle p_{1}, h_{11}\right\rangle=\frac{1}{2}\left\langle p_{1}, B\left(q_{1}, q_{1}\right)\right\rangle$, we obtain

$$
a_{3}=\frac{1}{6}\left\langle p_{1}, C\left(q_{0}, q_{0}, q_{0}\right)\right\rangle+\frac{1}{2}\left\langle p_{1}, B\left(h_{20}, q_{0}\right)\right\rangle-\frac{1}{2} a_{2}\left\langle p_{1}, B\left(q_{1}, q_{1}\right)\right\rangle .
$$

Some simplifications

\square Since $\left\langle p_{1}, h_{20}\right\rangle=-\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle$, we obtain

$$
b_{2}=\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle+\left\langle p_{1}, B\left(q_{0}, q_{1}\right)\right\rangle .
$$

\square Since $\left\langle p_{1}, h_{11}\right\rangle=\frac{1}{2}\left\langle p_{1}, B\left(q_{1}, q_{1}\right)\right\rangle$, we obtain

$$
a_{3}=\frac{1}{6}\left\langle p_{1}, C\left(q_{0}, q_{0}, q_{0}\right)\right\rangle+\frac{1}{2}\left\langle p_{1}, B\left(h_{20}, q_{0}\right)\right\rangle-\frac{1}{2} a_{2}\left\langle p_{1}, B\left(q_{1}, q_{1}\right)\right\rangle .
$$

\square Similarly, we obtain

$$
\begin{aligned}
b_{3} & =\frac{1}{2}\left\langle p_{1}, C\left(q_{0}, q_{0}, q_{1}\right)+2 B\left(h_{11}, q_{0}\right)+B\left(h_{20}, q_{1}\right)\right\rangle \\
& +\frac{1}{2}\left\langle p_{0}, C\left(q_{0}, q_{0}, q_{0}\right)+3 B\left(h_{20}, q_{0}\right)\right\rangle \\
& -\frac{1}{2} b_{2}\left\langle p_{1}, B\left(q_{1}, q_{1}\right)\right\rangle+a_{2}\left\langle p_{0}, B\left(q_{1}, q_{1}\right)\right\rangle \\
& -5 a_{2}\left\langle p_{0}, h_{11}\right\rangle .
\end{aligned}
$$

6D-model of two coupled Faraday disk homopolar dynamos

The ODE system (Moroz, Hilde \& Soward [1998]):

$$
\left\{\begin{aligned}
\dot{x}_{1} & =m x_{4} x_{2}-x_{1}-\beta x_{3}, \\
\dot{x}_{2} & =\alpha-\alpha m x_{1} x_{4}-k x_{2}, \\
\dot{x}_{3} & =x_{1}-\lambda x_{3}, \\
\dot{x}_{4} & =x_{1} x_{5}-x_{4}-\beta x_{6}, \\
\dot{x}_{5} & =\alpha-\alpha x_{1} x_{4}-k x_{5}, \\
\dot{x}_{6} & =x_{4}-\lambda x_{6},
\end{aligned}\right.
$$

where $(\alpha, \beta, k, \lambda, m)$ are positive parameters. The system is invariant under the transformation

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto\left(-x_{1}, x_{2},-x_{3},-x_{4}, x_{5},-x_{6}\right)
$$

For $\left(\alpha^{0}, \beta^{0}\right)=\left(\frac{(1+\lambda) k}{\sqrt{m}}, \lambda^{2}\right)$ the equilibrium $x^{0}=\left(0, \frac{\alpha}{k}, 0,0, \frac{\alpha}{k}, 0\right)$ has Jacobian matrix

$$
A=\left(\begin{array}{crrcrr}
-1 & 0 & -\lambda^{2} & (1+\lambda) \sqrt{m} & 0 & 0 \\
0 & -k & 0 & 0 & 0 & 0 \\
1 & 0 & -\lambda & 0 & 0 & 0 \\
\frac{1+\lambda}{\sqrt{m}} & 0 & 0 & -1 & 0 & -\lambda^{2} \\
0 & 0 & 0 & 0 & -k & 0 \\
0 & 0 & 0 & 1 & 0 & -\lambda
\end{array}\right)
$$

with one double zero eigenvalue, i.e. an equivariant BT bifurcation occurs.

$$
\begin{gathered}
q_{0}=\left(\begin{array}{c}
\sqrt{m} \lambda \\
0 \\
\sqrt{m} \\
\lambda \\
0 \\
1
\end{array}\right), q_{1}=\left(\begin{array}{c}
\sqrt{m} \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \\
p_{1}=\frac{1}{2 \sqrt{m}}\left(\begin{array}{c}
1 \\
0 \\
-\lambda \\
\sqrt{m} \\
0 \\
-\sqrt{m} \lambda
\end{array}\right), p_{0}=\frac{1}{2 \sqrt{m}}\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
\sqrt{m}
\end{array}\right) .
\end{gathered}
$$

\square Bilinear form $B: \mathbb{R}^{6} \times \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$,

\square Since no cubic term is present, the 3 -form C vanishes identically.
\square Due to the symmetry, we have $a_{2}=b_{2}=0$, so that

$$
a_{3}=\frac{1}{2}\left\langle p_{1}, B\left(h_{20}, q_{0}\right)\right\rangle
$$

and

$$
\begin{aligned}
b_{3} & =\left\langle p_{1}, 2 B\left(h_{11}, q_{0}\right)\right\rangle \\
& +\frac{1}{2}\left\langle p_{1}, B\left(h_{20}, q_{1}\right)\right\rangle \\
& +\frac{3}{2}\left\langle p_{0}, B\left(h_{20}, q_{0}\right)\right\rangle .
\end{aligned}
$$

Solving the corresponding singular linear systems, we obtain

$$
h_{20}=-2 \lambda^{2}(1+\lambda)\left(\begin{array}{c}
0 \\
m \\
0 \\
0 \\
1 \\
0
\end{array}\right), h_{11}=-\frac{2 m \lambda(1+\lambda)(k-\lambda)}{k}\left(\begin{array}{c}
0 \\
m \\
0 \\
0 \\
1 \\
0
\end{array}\right) .
$$

Here h_{20} is fixed to assure the solvability of the system for h_{02}, while h_{11} is an arbitrary solution of the corresponding system. Since $a_{2}=0$, its choice does not affect the value of b_{3}.

Using the above specified quantities, we easily compute

$$
\begin{aligned}
a_{3} & =-\frac{1}{2} \sqrt{m}(m+1) \lambda^{3}(1+\lambda), \\
b_{3} & =-\frac{1}{2 k} \sqrt{m}(m+1) \lambda^{2}(1+\lambda)(3 k-2 \lambda) .
\end{aligned}
$$

\square Using the above specified quantities, we easily compute

$$
\begin{aligned}
& a_{3}=-\frac{1}{2} \sqrt{m}(m+1) \lambda^{3}(1+\lambda), \\
& b_{3}=-\frac{1}{2 k} \sqrt{m}(m+1) \lambda^{2}(1+\lambda)(3 k-2 \lambda) .
\end{aligned}
$$

\square Since the coefficients are defined to within a nonzero multiple corresponding to the scaling of the normal form variables, they can be harmlessly divided by $-\frac{1}{2} \sqrt{m}(m+1) \lambda^{2}(1+\lambda)$, which leads to

$$
a_{3}=\lambda, \quad b_{3}=\frac{1}{k}(3 k-2 \lambda) .
$$

\square Using the above specified quantities, we easily compute

$$
\begin{aligned}
& a_{3}=-\frac{1}{2} \sqrt{m}(m+1) \lambda^{3}(1+\lambda), \\
& b_{3}=-\frac{1}{2 k} \sqrt{m}(m+1) \lambda^{2}(1+\lambda)(3 k-2 \lambda) .
\end{aligned}
$$

\square Since the coefficients are defined to within a nonzero multiple corresponding to the scaling of the normal form variables, they can be harmlessly divided by $-\frac{1}{2} \sqrt{m}(m+1) \lambda^{2}(1+\lambda)$, which leads to

$$
a_{3}=\lambda, \quad b_{3}=\frac{1}{k}(3 k-2 \lambda) .
$$

A codim 3 bifurcation occurs at $\lambda=\frac{3}{2} k$, since then $b_{3}=0$.

OPEN QUESTIONS

\square Other bifurcations with cycle "blow-up", e.g. $Z H$?
\square Higher codimension ?
\square Parameter-dependent normalization?

