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DEGENERATE BT BIFURCATIONS IN PLANAR ODES

W Classification of codim 3 BT points
W Bifurcations of a triple equilibrium with elliptic sector

W Example: A basic two-stage population model
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tion of codim 3 BT points

nsider a generic smooth family of planar autonomous ODEs

i = f(z,0), v €R* aecR™.
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Classification of codim 3 BT points

® Consider a generic smooth family of planar autonomous ODEs
i = f(z,a), z€R%acR™.

™ Suppose that f(0,0) = 0and A = f,(0,0) has one double zero

0 0
This indicates a Bogdanov-Takens (BT") bifurcation.

0 1
eigenvalue with the Jordan block ( )
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Classification of codim 3 BT points

® Consider a generic smooth family of planar autonomous ODEs
i = f(z,a), z€R%acR™.

™ Suppose that f(0,0) = 0and A = f,(0,0) has one double zero

0 0
This indicates a Bogdanov-Takens (BT") bifurcation.

0 1
eigenvalue with the Jordan block ( )

¥ The ODE at the BT-bifurcation is formally smoothly equivalent to

.
Wo = Wi,

. k—1
) wy = g (akwlg + brwy wl).
\ k>2
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codim 2 BT bifurcation

sal unfolding when a2b2 # 0 (Bogdanov[1975], Takens[1974]):

y

& = &,
& B1 + Bobo + asls + ba&oés.

N

2 U = Universiteit Utrecht

NS



Versal unfolding when asbo # 0 (Bogdanov[1975], Takens[1974]):

(

50 — 517
£ = Bi+ Pabo + a2l + babofy.

N

The bifurcation diagram:
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BT bifurcation with double equilibrium

o = 0 but ag # 0, the critical ODE is smoothly orbitally

1valent to

wy = wi,

w1 = aswy + bawgwi + O([|(wo, w1)|).
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Codim 3 BT bifurcation with double equilibrium

W If bo = 0 but as # 0, the critical ODE is smoothly orbitally

equivalent to

.
wyg = Wy,

= agwg + bawgwr + O(| (wo, w)|I°).

W Versal unfolding when b, = 0 but a2b4 # 0 (Berezovskaya &
Khibnik [1985], Dumortier, Roussarie & Sotomayor [1987]):

2

50 — 517
E1 = Bi1+ Bobl + Bs&o€1 + anld + by£3s:.

N

DBT — n. 7/3



Codim 3 BT bifurcation with double equilibrium

W If bo = 0 but as # 0, the critical ODE is smoothly orbitally

equivalent to

.
wyg = Wy,

= agwg + bawgwr + O(| (wo, w)|I°).

W Versal unfolding when b, = 0 but a2b4 # 0 (Berezovskaya &
Khibnik [1985], Dumortier, Roussarie & Sotomayor [1987]):

2

éO — 517
E1 = Bi1+ Bobl + Bs&o€1 + anld + by£3s:.

N

% The bifurcation diagram includes a neutral saddle homoclinic and a
degenerate Andronov-Hopf (Bautin) bifurcation curves.
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BT bifurcation with triple equilibrium (b, > 0)

12 = 0 but baaz # 0, the critical ODE is smoothly orbitally
3b2a4 to

5&3

livalent with by = by —

y
wyg = Wy,

i wy = agwg + bywowq —I—bgwgwl —|—O(||(w0,w1)||5).
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Codim 3 BT bifurcation with triple equilibrium (b5 > 0)

W If ao = 0 but boaz # 0, the critical ODE is smoothly orbitally

3b
equivalent with b5 = bg — 2% 1o
5&3
y
< wo = wi,
| wy = agwg + bowowy + bgwgwl = O(H(wo,wl)H5).

W If a3 > 0 the origin is a topological saddle. If ag < 0, b3 + 8az < 0
and b # 0, the origin is a topological focus. If as < 0 and
b3 + 8as > 0, the origin has one elliptic sector.
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Codim 3 BT bifurcation with triple equilibrium (b, > 0)

W If ao = 0 but boaz # 0, the critical ODE is smoothly orbitally

3b
equivalent with b5 = bg — 2% 1o
5&3
y
) wo = wi,
| wy = agwg + bowowy + bgwgwl = O(|](wo,w1)\|5).

W If a3 > 0 the origin is a topological saddle. If ag < 0, b3 + 8az < 0
and b # 0, the origin is a topological focus. If as < 0 and
b3 + 8as > 0, the origin has one elliptic sector.

W “Versal” unfolding in all cases (Dumortier, Roussarie, Sotomayor &

Zoladek [1991]):
<( éO — 517
| &1 = B+ Pabo + Baba + asf +batobs + ByEGEL.
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orms with Z,-symmetry

symmeric systems, degenerate BT bifurcations have smaller

limensions.
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Normal forms with Z,-symmetry

¥ In symmeric systems, degenerate BT bifurcations have smaller

codimensions.

W The Zo-symmetry implies that certain coefficients in the critical
normal form vanish, 1.e.

y
Wy = Wi,

| wy = a3w8+b3w8w1+O(H(wo,w1)||5),

which leads to unfoldings like

2

& = &,
! &1 = Biéo + Babr + az€d + bacley,

provided a3bs # 0 (Carr [1981])
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ons of a triple equilibrium with elliptic sector

ncated and scaled critical normal form:

& =
n BEN + €1€% + €267,

ere €1 = £1,e9 = £+1,and G > 0.
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Bifurcations of a triple equilibrium with elliptic sector

¥ Truncated and scaled critical normal form:

v

& =
i = Ben+ el + e,

where e; = £1,e0 = £1,and 8 > 0.

W Saddle case: €; = 1, any €5 and (3;
Focus case: ¢, = —1and 0 < 8 < 2v/2;
Elliptic case: € = —1 and 2v/2 < §.
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Bifurcations of a triple equilibrium with elliptic sector

¥ Truncated and scaled critical normal form:

v

& =
n = B&n+ e+ e,

\

where e; = £1,e0 = £1,and 8 > 0.

W Saddle case: €; = 1, any €5 and (3;
Focus case: ¢, = —1and 0 < 8 < 2v/2;
Elliptic case: e = —1 and 2v/2 < §.

® Unfolding:
& =
no= —p — b +vn+ By — & — .
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Elliptic versus focus case

® The schematic bifurcation diagram differs drastically from the
theoretical bifurcation diagram for the elliptic case given by
Dumortier et al. [1991] who studied phase portraits in a fixed small
neighborhood of the origin.
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Elliptic versus focus case

® The schematic bifurcation diagram differs drastically from the
theoretical bifurcation diagram for the elliptic case given by
Dumortier et al. [1991] who studied phase portraits in a fixed small
neighborhood of the origin.

W It turns out that generic two-parameter slices in the elliptic case are

topologically equivalent to those in the focus case.
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The schematic bifurcation diagram differs drastically from the
theoretical bifurcation diagram for the elliptic case given by
Dumortier et al. [1991] who studied phase portraits in a fixed small
neighborhood of the origin.

It turns out that generic two-parameter slices in the elliptic case are

topologically equivalent to those in the focus case.

However, the inner limit cycle demonstrates rapid amplitude changes

(“canard-like” behavior) near the bifurcation curve 7.
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The schematic bifurcation diagram differs drastically from the
theoretical bifurcation diagram for the elliptic case given by
Dumortier et al. [1991] who studied phase portraits in a fixed small
neighborhood of the origin.

It turns out that generic two-parameter slices in the elliptic case are

topologically equivalent to those in the focus case.

However, the inner limit cycle demonstrates rapid amplitude changes

(“canard-like” behavior) near the bifurcation curve 7.

The “big” homoclinic orbit to the neutral saddle (point F') shrinks not
to the origin of the phase plane, but to the boundary of the elliptic

sector that has a finite size in the unfolding.
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0-stage population model

e juvenile-adult model (Kostova, Li & Friedman [1999]):

é—f = % (9(y)y —mL — f(L)L),
dy
a - f(L)L — Y,

ere f(L) =e L, g(y) = el/Da—v),
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A basic two-stage population model

® The juvenile-adult model (Kostova, Li & Friedman [1999]):
( dL L4

il E(g(y)y—mL—f(L)L),
-
ST f(L)L —y,

where f(L) = e L, g(y) = e(t/b)(a—y),

W For fixed b > 0, there are u = ,uﬁ, m = mF, and a = a?, such that the
model has a triple equilibrium (Lﬁ, yﬂ) with double zero eigenvalue —
a degenerate BT bifurcation occurs.
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A basic two-stage population model

® The juvenile-adult model (Kostova, Li & Friedman [1999]):
( dL L4

il E(g(y)y—mL—f(L)L),
-
ST f(L)L —y,

where f(L) = e L, g(y) = e(t/b)(a—y),

W For fixed b > 0, there are u = ,uﬁ, m = mF, and a = a?, such that the
model has a triple equilibrium (Lﬂ, yﬂ) with double zero eigenvalue —
a degenerate BT bifurcation occurs.

W For b = 2.2, we have
pf = 0.01179614, m! = 0.01192386945, af = 0.4492276697 and
LP =1.513180178, y* = 0.33321523.
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NORMAL FORMS ON CENTER MANIFOLDS IN n-
DIMENSIONAL ODES

¥ Combined reduction/normalization technique
W Explicit normal form coefficients

¥ Example: 6D-model of two coupled Faraday disk homopolar
dynamos
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d reduction/normalization technique

tical ODE: & = F(x), x € R",

h Taylor expansion

(¢) = Az + LB(w,2) + 1C(x,2,2) + £ D(x,2,2,2) + O(|a|).
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Combined reduction/normalization technique

W Critical ODE: z = F(x), x € R",

with Taylor expansion

F(z) = Az + 1B(a,2) + 10(w,2,2) + £ D(x, 2,2,2) + O(|l2|]").

W Eigenvectors: ¢o.1,p0,1 € R",
Ago = 0,Aq1 = qo, A'p1 = 0,A"po = p1

with (po, o) = (p1,q1) = 1, {po, q1) = {(p1, q0) = 0.
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Combined reduction/normalization technique

W Critical ODE: z = F(x), x € R",

with Taylor expansion

F(z) = Az + 1B(a,2) + 10(w,2,2) + £ D(x, 2,2,2) + O(|l2|]").

W Eigenvectors: ¢o.1,p0,1 € R",
Ago = 0,Aq1 = qo, A"p1 = 0,A"py = p1

with (po, o) = (p1,q1) = 1, {po, q1) = {(p1, q0) = 0.

W Critical center manifold:

1 .
z = H(wo,w1) = wogo+wiq1+ Z Whjkw‘éw’f+0(||(wo,w1)||5)
2<j+k<4

where (wg,w;) € R? hj, € R™.
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tical normal form:

wo = W,
Wy, = agwg + bowopwy + agwg’ + bgwgwl + a4w§ + b4w8w1
+ O(]|(wo, w1)]|°)-
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tical normal form:

wo = W,
. _ 2 b 3 b 2 4 b 3
W) = AWy T 0WoW1 + 3wy + 03WHW1 + A4W( + bawyw

+ O([|(wo, w1)|”).

mological equation: H.,,wo + Hy, w1 = F(H (wg, wy)).
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Critical normal form:

wy = wi,
< - _ 2 b 3 b 2 4 b 3
w1 = aWj + 0wowi + azwy + 03WHW1 + aA4Wy + 04WHwW1

+ O([|(wo, w1)|I°)-

Homological equation: H,,wg + Hy w1 = F(H (wg, wy)).

Collecting the wgw’f -terms give singular linear systems for /.
Since these systems must be solvable, their right-hand sides should
be orthogonal to p;. Some of these Fredholm conditions will define
the normal form coefficients, others can be satisfied using a freedom
in selecting solutions of singular linear systems appearing at

lower-order terms.
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ormal form coefficients: Quadratic terms

e wi-terms give
Ahgo = 2a2g1 — B(qo, 90)-

e Fredholm solvability condition for this system implies

a2 — %(ph B(QO? QO)>
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EXplicit normal form coefficients: Quadratic terms

M The wi-terms give

Ahgo = 2a2q1 — B(qo, o).

The Fredholm solvability condition for this system implies

a2 — %<p17 B(QO) QO)>
W The wowq-terms give
Ah11 = baq1 + hao — B(qo, q1)-

Its solvability leads to the expression

ba = (p1,B(qo,q1)) — (p1, h20)-

DBT — n. 20/~



The w?-terms give
Ahga = 2h11 — B(q1,q1)-

Since
(p1, h11) = (po, h2o) — (Po, B(q0, 1)),

we get

(p1,2h11—B(q1,q1)) = 2(po, h20)—2(po, B(q0,91))—(p1, B(q1,q1))-

The substitution hog — hog + 0gqo With a properly selected 0y makes
the right-hand side of this equation equal to zero. This does not affect

the coefficient b2, because (p1,qo) = 0.
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MS

e wi-terms give
Ahzo = 6q1a3 + 6h11az — 3B(hao, 90) — C(o 90, 90)-

solvability implies

a3z = %(pb C(q07QO7QO)> =+ %<p17B(h207q0)> - a’2<p17 h11>'
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Cubic terms

M The w;-terms give
Ahgo = 6q1a3 + 6h11a2 — 3B(hao, q0) — C(qo, 0, 0)-
Its solvability implies
az = ¢(p1,C(q0, 90, 90)) + 5{p1, B(h2o,q0)) — az2(p1, h11).
W The wiw;-terms give
Ahgy = h3o+2b3q1+2a2ho2+2b2h11—2B(h11, q0) —B(h20, 1) —C(q0, 90, q1);
which solvability implies

<p17 C(QO) qo, Q1) —+ QB(hlla QO) =+ B(h207 Q1)>
(p1, hao + 2a2hp2 + 2b2h11).

N|— N
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The singular linear systems resulting from the wow?- and w;-terms,

Ahi2 = 2ho1 + 2baho2 — B(ho2,90) — 2B(h11,¢1) — C(qo, q1,q1)

and
Ahgs = 3h12 — 3B(ho2,q1) — C(q1,q1,q1),

can be made solvable for any hgo by substituting hgg — hszg + 01qo
and then ho1 +— ho1 + d2qp with properly selected 61 and 5. This

does not change bs.
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der terms

g wé -terms imply

aqg = i<p17D(QO7QO7QO7QO) +6C(h207QO7QO)>
+ L4<pl) 4B(h307 QO) —+ 3B(h’207 h20)>

az(p1, ho1) — as(p1, h11).
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Fourth-order terms

W The wé—terms imply

as = 357:(p1,D(q0, 90,90, q0) + 6C(h20, 90, q0))
+  51(p1,4B(h30, q0) + 3B(h2o, ko))
sas(p1, ha1) — as(p1, hi1).

¥ The wiw,-terms imply

by = §(p1,D(q0,9,90,q1) + 3C(h20, g0, q1) + 3C(h11, 0, 90))
+  #(p1,3B(ha1, q0) + 3B(hi1, hao) + B(hso, q1))
$(p1, hao) — 5b2(p1, ho1)

—  (p1, agh12 + azhg + bshi1).
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plifications

ce (p1, h20) = —(po, B(qo, q0)), we obtain

ba = (po, B(q0,40)) + {r1, B(qo0, q1))-

Wi
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Some simplifications

W Since (p1, hog) = —(po, B(qo, q0)), we obtain

ba = (po, B(qo,qo0)) + (p1, B(q0,q1))-

W Since (p1, h11) = %(pl,B(ql,q1)>, we obtain

az = (p1,C(q0, 90, 90)) + 5(p1, B(h2o,90)) — 5a2(p1, B(q1, q1)).
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Some simplifications

W Since (p1, hog) = —(po, B(qo, q0)), we obtain
b2 = (po, B(q0,40)) + (p1, B(q0, q1))-

W Since (p1, h11) = %(pl,B(ql,q1)>, we obtain

az = £(p1,C(q0, 90, 0)) + 3(p1, B(h2o,q0)) — 3a2(p1, B(q1, q1)).

¥ Similarly, we obtain

p1,C(qo,q0, 1) + 2B(h11,q0) + B(h2o,q1))
po, C(qo, qo, qo) + 3B (h20,q0))

2(p1, B(q1,q1)) + a2(po, B(q1,q1))

—  5az(po, h11)-

by =

N—= N[~ N
7 7

S
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6D-model of two coupled Faraday disk homopolar dynamos

The ODE system (Moroz, Hilde & Soward [1998]):

(

T1 = mxar2 — 21 — PBT3,
To = o — amxiTy — kxg,
Ct‘g — T — )\333,

< .
T4 = T1T5 — T4 — P,
Ts = o — ar1xg — ks,

g i6 Y )\336,

where (a, 8, k, A\, m) are positive parameters. The system is invariant

under the transformation

(xla L2, X3, T4,L5, 556) — (_xla L2, —L3, —T4,T5, —376>.
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(14 \)k
J/m

For (o, 1) =

has Jacobian matrix

;A ) the equilibrium z° = (O T 0,0, ) ())

[ =1 0 =X (1+XNym 0 0 )
0 -k 0 0 0 0
1 0 —A 0 0 0
(= % o 0 -1 0 —A2
0 0 0 0 —k
\ 0 0 0 1 0 -\ )

with one double zero eigenvalue, i.e. an equivariant BT bifurcation occurs.
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¥ Bilinear form B : R® x R% — RS,

B(v,w)

(

m(vaws + vawy)
—kv/m(1 + X)(vqawy + viwy)
0

V4W1 + V1Ws

1+ Mk
! ) (V4w + v1wy)

Jm
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¥ Since no cubic term is present, the 3-form C' vanishes identically.
¥ Due to the symmetry, we have as = by = 0, so that

1

as = 5(291,3(}&207610»

and

bs = (p1,2B(hi11,q0))

1
=+ §<p17B(h207Q1)>
3

+ §<P07B(h207410)>-

DBT — n. 30/



Solving the corresponding singular linear systems, we obtain

(0 [0\
i m
hoo = —2X\°(1 + A) . g = _2mA(l +kA)(k -N | 0
. 0

1 1
\ 0 \ 0
Here hog 1s fixed to assure the solvability of the system for hgo, while /11

1s an arbitrary solution of the corresponding system. Since ag = 0, its

choice does not affect the value of b3.
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ng the above specified quantities, we easily compute
1
T —5\/ﬁ(m + DAL+ N),

by = —%\/ﬁ(m + 1)A2(1 4+ A)(3k — 2)).

Wi
2 U = Universiteit Utrecht

NS



Using the above specified quantities, we easily compute
1
ag = —§m(m + DA (14 N),
1
by = —%\/ﬁ(m + DA%(1 4+ M) (3k — 2)).

Since the coefficients are defined to within a nonzero multiple

corresponding to the scaling of the normal form variables, they can
be harmlessly divided by —%/m(m + 1)A%(1 + \), which leads to

1
a3 — )\, bg — E(B]{? — 2)\)
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Using the above specified quantities, we easily compute
1
ag = —§m(m + DA (14 N),
1
by = —%\/ﬁ(m + DA%(1 4+ M) (3k — 2)).

Since the coefficients are defined to within a nonzero multiple
corresponding to the scaling of the normal form variables, they can
be harmlessly divided by —%/m(m + 1)A%(1 + \), which leads to

1
a3 — )\, bg — E(gk — 2)\)

A codim 3 bifurcation occurs at A = %k, since then bz = 0.

DBT — pn. 32/~



ESTIONS

er bifurcations with cycle “blow-up”, e.g. ZH ?
her codimension ?

ameter-dependent normalization ?
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