Continuation of point-to-cycle connections in 3D ODEs Yuri A. Kuznetsov

joint work with E.J. Doedel, B.W. Kooi, and G.A.K. van Voorn

Contents

\square Previous works
Truncated BVP's with projection BC's
The defining BVP in 3D

- Finding starting solutions with homopoty

Examples
\square Open questions

Previous works

W.-J. Beyn, [1994], "On well-posed problems for connecting orbits in dynamical systems.", In Chaotic Numerics (Geelong, 1993), volume 172 of Contemp. Math., 131-168. Amer. Math. Soc., Providence, RI.
T. Pampel, [2001], "Numerical approximation of connecting orbits with asymptotic rate," Numer. Math., 90, 309-348.

- L. Dieci and J. Rebaza, [2004], "Point-to-periodic and periodic-to-periodic connections," BIT Numerical Mathematics, 44, 41-62.
L. Dieci and J. Rebaza, [2004], "Erratum: "Point-to-periodic and periodic-to-periodic connections"," BIT Numerical Mathematics, 44, 617-618.

2. Truncated BVP's with projection BC's

\square Some notations
Isolated families of connecting orbits
\square Truncated BVP
E Error estimate

Some notations

- Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n} .
$$

Some notations

- Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n} .
$$

\square Let $O^{-}=\xi$ be a hyperbolic equilibrium with $\operatorname{dim} W_{-}^{u}=n_{u}^{-}$.

Some notations

- Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

\square Let $O^{-}=\xi$ be a hyperbolic equilibrium with $\operatorname{dim} W_{-}^{u}=n_{u}^{-}$.
\square Let O^{+}be a hyperbolic limit cycle with $\operatorname{dim} W_{+}^{s}=m_{s}^{+}$.

Some notations

- Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n} .
$$

\square Let $O^{-}=\xi$ be a hyperbolic equilibrium with $\operatorname{dim} W_{-}^{u}=n_{u}^{-}$.
Let O^{+}be a hyperbolic limit cycle with $\operatorname{dim} W_{+}^{s}=m_{s}^{+}$.
\square If $x^{+}(t)$ is a periodic solution (with minimal period T^{+}) corresponding to O^{+}, then $m_{s}^{+}=n_{s}^{+}+1$, where n_{s}^{+}is the number of eigenvalues μ^{+}of the monodromy matrix

$$
M^{+}=\left.D_{x} \varphi^{T^{+}}(x)\right|_{x=x^{+}(0)},
$$

satisfying $\left|\mu^{+}\right|<1$.

Isolated families of connecting orbits

\square Necessary condition: $p=n-m_{s}^{+}-n_{u}^{-}+2$ (Beyn, 1994).

Isolated families of connecting orbits

Necessary condition: $p=n-m_{s}^{+}-n_{u}^{-}+2$ (Beyn, 1994).
\square Two types of point-to-cycle connections in \mathbb{R}^{3} :

(a) $\operatorname{dim} W_{-}^{u}=1$
(b) $\operatorname{dim} W_{-}^{u}=2$

Truncated BVP

\square The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.

Truncated BVP

\square The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.
\square The points $u\left(\tau_{-}\right)$and $u\left(\tau_{+}\right)$are required to belong to the linear subspaces that are tangent to the unstable and stable invariant manifolds of O^{-}and O^{+}, respectively:

$$
\left\{\begin{aligned}
L^{-}\left(u\left(\tau_{-}\right)-\xi\right) & =0, \\
L^{+}\left(u\left(\tau_{+}\right)-x^{+}(0)\right) & =0 .
\end{aligned}\right.
$$

Truncated BVP

\square The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.

- The points $u\left(\tau_{-}\right)$and $u\left(\tau_{+}\right)$are required to belong to the linear subspaces that are tangent to the unstable and stable invariant manifolds of O^{-}and O^{+}, respectively:

$$
\left\{\begin{aligned}
L^{-}\left(u\left(\tau_{-}\right)-\xi\right) & =0 \\
L^{+}\left(u\left(\tau_{+}\right)-x^{+}(0)\right) & =0
\end{aligned}\right.
$$

\square Generically, the truncated BVP composed of the ODE, the above projection $B C$'s, and a phase condition on u, has a unique solution family $(\hat{u}, \hat{\alpha})$, provided that the ODE has a connecting solution family satisfying the pahase condition and Beyn's equality.

Error estimate

If u is a generic connecting solution to the ODE at parameter value α, then the following estimate holds:

$$
\left\|\left(\left.u\right|_{\left[\tau_{-}, \tau_{+}\right]}, \alpha\right)-(\hat{u}, \hat{\alpha})\right\| \leq C \mathrm{e}^{-2 \min \left(\mu_{-}\left|\tau_{-}\right|, \mu_{+}\left|\tau_{+}\right|\right)}
$$

where

- \| $\|\cdot\|$ is an appropriate norm in the space $C^{1}\left(\left[\tau_{-}, \tau_{+}\right], \mathbb{R}^{n}\right) \times \mathbb{R}^{p}$,
$\left.\square u\right|_{\left[\tau_{-}, \tau_{+}\right]}$is the restriction of u to the truncation interval,
$\square \mu_{ \pm}$are determined by the eigenvalues of the Jacobian matrix $D_{u} f$ at ξ and the monodromy matrix M^{+}.
(Pampel, 2001; Dieci and Rebaza, 2004)

3. The defining BVP in 3D

It has equilibrium-, cycle-, and connection-related parts.

Equilibrium-related equations

\square If $n_{u}^{-}=1$, we use $u\left(\tau_{-}\right)=\xi+\varepsilon v$, where

$$
\left\{\begin{aligned}
f(\xi, \alpha) & =0, \\
f_{\xi}(\xi, \alpha) v-\lambda_{u} v & =0, \\
\langle v, v\rangle-1 & =0 .
\end{aligned}\right.
$$

Equilibrium-related equations

\square If $n_{u}^{-}=1$, we use $u\left(\tau_{-}\right)=\xi+\varepsilon v$, where

$$
\left\{\begin{aligned}
f(\xi, \alpha) & =0, \\
f_{\xi}(\xi, \alpha) v-\lambda_{u} v & =0, \\
\langle v, v\rangle-1 & =0 .
\end{aligned}\right.
$$

If $n_{u}^{-}=2$, we use $\left\langle v, u\left(\tau_{-}\right)-\xi\right\rangle=0$, where

$$
\left\{\begin{aligned}
f(\xi, \alpha) & =0, \\
f_{\xi}^{\mathrm{T}}(\xi, \alpha) v-\lambda_{s} v & =0, \\
\langle v, v\rangle-1 & =0,
\end{aligned}\right.
$$

together with $\left\langle u\left(\tau_{-}\right)-\xi, u\left(\tau_{-}\right)-\xi\right\rangle-\varepsilon^{2}=0$.

Cycle-related equations

\square Periodic solution:

$$
\left\{\begin{aligned}
\dot{x}^{+}-f\left(x^{+}, \alpha\right) & =0, \\
x^{+}(0)-x^{+}\left(T^{+}\right) & =0 .
\end{aligned}\right.
$$

Cycle-related equations

\square Periodic solution:

$$
\left\{\begin{aligned}
\dot{x}^{+}-f\left(x^{+}, \alpha\right) & =0, \\
x^{+}(0)-x^{+}\left(T^{+}\right) & =0 .
\end{aligned}\right.
$$

- Adjoint eigenfunction: $\mu=\frac{1}{\mu_{u}^{+}}$

$$
\left\{\begin{aligned}
\dot{w}+f_{u}^{\mathrm{T}}\left(x^{+}, \alpha\right) w & =0, \\
w\left(T^{+}\right)-\mu w(0) & =0, \\
\langle w(0), w(0)\rangle-1 & =0 .
\end{aligned}\right.
$$

Cycle-related equations

\square Periodic solution:

$$
\left\{\begin{aligned}
\dot{x}^{+}-f\left(x^{+}, \alpha\right) & =0, \\
x^{+}(0)-x^{+}\left(T^{+}\right) & =0 .
\end{aligned}\right.
$$

- Adjoint eigenfunction: $\mu=\frac{1}{\mu_{u}^{+}}$

$$
\left\{\begin{aligned}
\dot{w}+f_{u}^{\mathrm{T}}\left(x^{+}, \alpha\right) w & =0, \\
w\left(T^{+}\right)-\mu w(0) & =0, \\
\langle w(0), w(0)\rangle-1 & =0 .
\end{aligned}\right.
$$

\square Projection BC: $\left\langle w(0), u\left(\tau_{+}\right)-x^{+}(0)\right\rangle=0$.

Connection-related equations

- We need a phase condition to select a unique periodic solution, i.e., to fix a base point

$$
x_{0}^{+}=x^{+}(0)
$$

on the cycle O^{+}.

Connection-related equations

- We need a phase condition to select a unique periodic solution, i.e., to fix a base point

$$
x_{0}^{+}=x^{+}(0)
$$

on the cycle O^{+}.

- Usually, an integral phase condition is used.

Connection-related equations

- We need a phase condition to select a unique periodic solution, i.e., to fix a base point

$$
x_{0}^{+}=x^{+}(0)
$$

on the cycle O^{+}.
U Usually, an integral phase condition is used.
For the point-to-cycle connection, we require the end point of the connection to belong to a plane orthogonal to the vector

$$
f_{0}^{+}=f\left(x^{+}(0), \alpha\right):
$$

$$
\left\{\begin{aligned}
\dot{u}-f(u, \alpha) & =0, \\
\left\langle f\left(x^{+}(0), \alpha\right), u\left(\tau_{+}\right)-x^{+}(0)\right\rangle & =0 .
\end{aligned}\right.
$$

The defining BVP in 3D: $\lambda=\ln |\mu|, \quad s=\operatorname{sign} \mu= \pm 1$. lor eco

$$
\left\{\begin{aligned}
u(0)-\xi-\varepsilon v & =0, \\
f(\xi, \alpha) & =0, \\
f_{\xi}(\xi, \alpha) v-\lambda_{u} v & =0, \\
\langle v, v\rangle-1 & =0, \\
o & \\
\langle v, u(0)-\xi\rangle & =0, \\
\langle u(0)-\xi, u(0)-\xi\rangle-\varepsilon^{2} & =0, \\
f(\xi, \alpha) & =0, \\
f_{\xi}^{\mathrm{T}}(\xi, \alpha) v-\lambda_{s} v & =0, \\
\langle v, v\rangle-1 & =0,
\end{aligned}\right.
$$

4. Finding starting solutions with homopoty

Adjoint scaled eigenfunction.
\square Homotopies to connecting orbits.

References to homotopy techniques for point-to-point connections:
E.J. Doedel, M.J. Friedman, and A.C. Monteiro, [1994], "On locating connecting orbits", Appl. Math. Comput., 65, 231-239.
E.J. Doedel, M.J. Friedman, and B.I. Kunin, [1997], "Successive continuation for locating connecting orbits", Numer. Algorithms, 14 , 103-124.

Adjoint scaled eigenfunction

\square For fixed α and any $\lambda, x^{+}(\tau)=x_{\text {old }}^{+}(\tau), w(\tau) \equiv 0$, and $h=0$ satisfy

$$
\left\{\begin{aligned}
\dot{x}^{+}-f\left(x^{+}, \alpha\right) & =0, \\
x^{+}(0)-x^{+}\left(T^{+}\right) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{\text {old }}^{+}(\tau), x^{+}(\tau)\right\rangle & =0, \\
\dot{w}+T^{+} f_{u}^{\mathrm{T}}\left(x^{+}, \alpha\right) w+\lambda w & =0, \\
w(1)-s w(0) & =0, \\
\langle w(0), w(0)\rangle-h & =0,
\end{aligned}\right.
$$

\square For fixed α and any $\lambda, x^{+}(\tau)=x_{\text {old }}^{+}(\tau), w(\tau) \equiv 0$, and $h=0$ satisfy

$$
\left\{\begin{aligned}
\dot{x}^{+}-f\left(x^{+}, \alpha\right) & =0, \\
x^{+}(0)-x^{+}\left(T^{+}\right) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{\text {old }}^{+}(\tau), x^{+}(\tau)\right\rangle & =0, \\
\dot{w}+T^{+} f_{u}^{\mathrm{T}}\left(x^{+}, \alpha\right) w+\lambda w & =0, \\
w(1)-s w(0) & =0, \\
\langle w(0), w(0)\rangle-h & =0,
\end{aligned}\right.
$$

\square A branch point at λ_{1} corresponds to the adjoint multiplier $\mu=s e^{\lambda_{1}}$.
Branch switching and continuation towards $h=1$ gives the eigenfunction w.

Continuation in $\left(T, h_{1}\right)$ for fixed $\alpha\left(\operatorname{dim} W_{-}^{u}=1\right) \quad$ lor

$$
x^{+}(0)-x^{+}(1)=0,
$$

$$
\left\{\begin{array} { r l }
{ u (0) - \xi - \varepsilon v } & { = 0 , } \\
{ f (\xi , \alpha) } & { = 0 , } \\
{ f _ { \xi } (\xi , \alpha) v - \lambda _ { u } v } & { = 0 , } \\
{ \langle v , v \rangle - 1 } & { = 0 . } \\
{ }
\end{array} \left\{\begin{array}{rl}
\Psi\left[x^{+}\right] & =0, \\
\dot{w}+T^{+} f_{u}^{\mathrm{T}}\left(x^{+}, \alpha\right) w+\lambda w & =0, \\
w(1)-s w(0) & =0, \\
\langle w(0), w(0)\rangle-1 & =0, \\
\dot{u}-T f(u, \alpha) & =0, \\
\left\langle f\left(x^{+}(0), \alpha\right), u(1)-x^{+}(0)\right\rangle-h_{1} & =0 .
\end{array}\right.\right.
$$

$$
\dot{x}^{+}-T^{+} f\left(x^{+}, \alpha\right)=0,
$$

Here, e.g. $\Psi\left[x^{+}\right]=x_{j}^{+}(0)-a_{j}$ and the initial connection $u(\tau)=\xi+\varepsilon v e^{\lambda_{u} T \tau}$.

$$
\left\{\begin{aligned}
u(0)-\xi-\varepsilon v & =0, \\
f(\xi, \alpha) & =0, \\
f_{\xi}(\xi, \alpha) v-\lambda_{u} v & =0, \\
\langle v, v\rangle-1 & =0 . \\
\dot{w}+T^{+} f_{u}^{\mathrm{T}}\left(x^{+}, \alpha\right) w+\lambda w & =0, \\
w(1)-s w(0) & =0, \\
\langle w(0), w(0)\rangle-1 & =0, \\
\dot{u}-T f(u, \alpha) & =0, \\
\left\langle f\left(x^{+}(0), \alpha\right), u(1)-x^{+}(0)\right\rangle & =0 .
\end{aligned}\right.
$$

When $h_{2}=0$ is located, improve connection by the continuation in $\left(\alpha_{1}, T\right)$ and then continue in (α_{1}, α_{2}) with fixed T (using the primary BVP).

Continuation in $\left(T, h_{1}\right)$ or $\left(c_{1}, c_{2}, h_{k}\right)\left(\operatorname{dim} W_{-}^{u}=2\right)$

The equilibrium-related part is replaced by the explicit BC

$$
\left\{\begin{aligned}
u(0)-\xi-\varepsilon\left(c_{1} v^{(1)}+c_{2} v^{(2)}\right) & =0, \\
c_{1}^{2}+c_{2}^{2}-1 & =0, \\
f(\xi, \alpha) & =0, \\
f_{\xi}(\xi, \alpha) v-\lambda_{u} v & =0, \\
\langle v, v\rangle-1 & =0,
\end{aligned}\right.
$$

where $v^{(1)}$ and $v^{(2)}$ are independent unit vectors tangent to W_{-}^{u} at ξ. The initial connection

$$
u(\tau)=\xi+\varepsilon e^{\tau T f_{u}(\xi, \alpha)} v^{(1)}, \quad c_{1}=1, \quad c_{2}=0
$$

Implementation in AUTO

Implementation in AUTO

$$
\begin{aligned}
\dot{U}(\tau)-F(U(\tau), \beta) & =0, \quad \tau \in[0,1], \\
b(U(0), U(1), \beta) & =0, \\
\int_{0}^{1} q(U(\tau), \beta) d \tau & =0,
\end{aligned}
$$

where

$$
U(\cdot), F(\cdot, \cdot) \in \mathbb{R}^{n_{d}}, b(\cdot, \cdot) \in \mathbb{R}^{n_{b c}}, q(\cdot, \cdot) \in \mathbb{R}^{n_{i c}}, \beta \in \mathbb{R}^{n_{f_{p}}}
$$

The number $n_{f p}$ of free parameters β is

$$
n_{f p}=n_{b c}+n_{i c}-n_{d}+1
$$

In our primary BVPs: $n_{d}=9, n_{i c}=0$, and $n_{b c}=19$ or 18

Example: $\operatorname{dim} W_{-}^{u}=1$

Lorenz system:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) \\
\dot{x}_{2}=r x_{1}-x_{2}-x_{1} x_{3} \\
\dot{x}_{3}=x_{1} x_{2}-b x_{3}
\end{array}\right.
$$

with the standard value $b=\frac{8}{3}$.

Example: $\operatorname{dim} W_{-}^{u}=1$

- Lorenz system:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) \\
\dot{x}_{2}=r x_{1}-x_{2}-x_{1} x_{3} \\
\dot{x}_{3}=x_{1} x_{2}-b x_{3}
\end{array}\right.
$$

with the standard value $b=\frac{8}{3}$.
The bifurcation curve in the (r, σ)-plane corresponding to the point-to-cycle connection is first presented by L.P. Shilnikov (1980).

Homotopy to eigenfunction

$\operatorname{At}(r, \sigma)=(21,10)$, there is a saddle limit cycle with

$$
x^{+}(0)=(9.265335,13.196014,15.997250), T^{+}=0.816222,
$$

that has

$$
\mu_{s}^{+}=0.0000113431, \quad \mu_{u}^{+}=1.26094
$$

Homotopy to eigenfunction

\square At $(r, \sigma)=(21,10)$, there is a saddle limit cycle with

$$
x^{+}(0)=(9.265335,13.196014,15.997250), T^{+}=0.816222,
$$

that has

$$
\mu_{s}^{+}=0.0000113431, \quad \mu_{u}^{+}=1.26094
$$

- Continuation in (λ, h) of the trivial solution of the BVP for the scaled adjoint eigenfunction $w(\tau)$ detects a branch point at

$$
\lambda=\ln \left(\mu_{u}^{+}\right)=0.231854 .
$$

Homotopy to eigenfunction

\square At $(r, \sigma)=(21,10)$, there is a saddle limit cycle with

$$
x^{+}(0)=(9.265335,13.196014,15.997250), \quad T^{+}=0.816222,
$$

that has

$$
\mu_{s}^{+}=0.0000113431, \quad \mu_{u}^{+}=1.26094
$$

- Continuation in (λ, h) of the trivial solution of the BVP for the scaled adjoint eigenfunction $w(\tau)$ detects a branch point at

$$
\lambda=\ln \left(\mu_{u}^{+}\right)=0.231854 .
$$

From it a nontrivial branch is followed until the value $h=1$ is reached. This gives a nontrivial eigenfunction $w(t)$ with

$$
w(0)=(0.168148,0.877764,-0.448616)^{\mathrm{T}},\|w(0)\|=1
$$

Homotopy to connection

\square Continue in $\left(T, h_{1}\right)$ until $h_{1}=0$:

(b) $T=1.54543$

(c) $T=2.00352$

Homotopy to connection

\square Continue in $\left(T, h_{1}\right)$ until $h_{1}=0$:

(a) $T=1.43924$
(b) $T=1.54543$
(c) $T=2.00352$
\square Continue in $\left(r, h_{2}\right)$ until $h_{2}=0$, that occurs at $r=24.0720$.

Continuation of the connection

Improve connection by the continuation in (r, T) :

(a) $(r, T)=(21.0,2.00352)$;
(b) $(r, T)=(24.0579,3.0)$
\square Continue the point-to-cycle bifurcation curve in (r, σ) :

Example: $\operatorname{dim} W_{-}^{u}=2$

\square The standard tri-trophic food chain model:

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\dot{x}_{1}=x_{1}\left(1-x_{1}\right)-\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}, \\
\dot{x}_{2}=\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}-\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{1} x_{2}, \\
\dot{x}_{3}=\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{2} x_{3},
\end{array}\right. \\
& \text { with } a_{1}=5, a_{2}=0.1, b_{1}=3, \text { and } b_{2}=2 .
\end{aligned}
$$

Example: $\operatorname{dim} W_{-}^{u}=2$

\square The standard tri-trophic food chain model:

$$
\left\{\begin{aligned}
\dot{x}_{1} & =x_{1}\left(1-x_{1}\right)-\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}} \\
\dot{x}_{2} & =\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}-\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{1} x_{2} \\
\dot{x}_{3} & =\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{2} x_{3}
\end{aligned}\right.
$$

with $a_{1}=5, a_{2}=0.1, b_{1}=3$, and $b_{2}=2$.

- Point-to-cycle connections in this model were first studied by M.P. Boer, B.W. Kooi, and S.A.L.M. Kooijman, [1999], "Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain," J. Math. Biol., 39, 19-38.

Homotopy to eigenfunction

\square At $d_{1}=0.25, d_{2}=0.0125$, we have an equilibrium

$$
\xi=(0.74158162,0.16666666,11.997732)
$$

and a saddle limit cycle with the period $T^{+}=24.282248$ and

$$
x^{+}(0)=(0.839705,0.125349,10.55289)
$$

Its nontrivial multipliers are $\mu_{s}^{+}=0.6440615, \mu_{u}^{+}=6.107464 \cdot 10^{2}$.

Homotopy to eigenfunction

\square At $d_{1}=0.25, d_{2}=0.0125$, we have an equilibrium

$$
\xi=(0.74158162,0.16666666,11.997732)
$$

and a saddle limit cycle with the period $T^{+}=24.282248$ and

$$
x^{+}(0)=(0.839705,0.125349,10.55289)
$$

Its nontrivial multipliers are $\mu_{s}^{+}=0.6440615, \mu_{u}^{+}=6.107464 \cdot 10^{2}$.
\square Continuation in (λ, h) of the secondary barnch from the branch point

$$
\lambda=\ln \left(\mu_{s}^{+}\right)=-0.439961 .
$$

gives at $h=1$ a nontrivial eigenfunction $w(t)$ with $\|w(0)\|=1$:

$$
w(0)=(0.09306,-0.87791,-4.69689)^{\mathrm{T}} .
$$

Homotopy to connection

The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W_{-}^{u} at distance $\varepsilon=0.001$ to ξ :

$$
u(0)=(0.742445,0.166163,11.997732) .
$$

Integration interval $T=155.905$.

Homotopy to connection

\square The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W_{-}^{u} at distance $\varepsilon=0.001$ to ξ :

$$
u(0)=(0.742445,0.166163,11.997732)
$$

Integration interval $T=155.905$.

- Continue in $\left(T, h_{1}\right)$ towards a minimum of h_{1}.

Homotopy to connection

\square The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W_{-}^{u} at distance $\varepsilon=0.001$ to ξ :

$$
u(0)=(0.742445,0.166163,11.997732)
$$

Integration interval $T=155.905$.

- Continue in $\left(T, h_{1}\right)$ towards a minimum of h_{1}.
\square Continue in $\left(c_{1}, c_{2}, h_{1}\right)$ to get $h_{1}=0$;

Homotopy to connection

\square The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W_{-}^{u} at distance $\varepsilon=0.001$ to ξ :

$$
u(0)=(0.742445,0.166163,11.997732)
$$

Integration interval $T=155.905$.

- Continue in $\left(T, h_{1}\right)$ towards a minimum of h_{1}.
\square Continue in $\left(c_{1}, c_{2}, h_{1}\right)$ to get $h_{1}=0$;
\square Continue in $\left(c_{1}, c_{2}, h_{2}\right)$ to get $h_{2}=0$.

Continuation of the connection

\square Improve connection by the continuations in T (and then in ε):

The connection with $T=180.0, \varepsilon^{2}=10^{-5}$.
\square Continuation in $\alpha_{1}=d_{1}$:

$\mathrm{LP}: d_{1}=0.280913$ and $d_{1}=0.208045(\mathrm{LPC})$.
\square Continue the point-to-cycle LP-bifurcation curve $T_{h e t}$ in $\left(d_{1}, d_{2}\right)$:

Open questions

\square Cycle-to-cycle connections ?

Open questions

\square Cycle-to-cycle connections ?

\square Should all this be integrated in AUTO ?

To be continued

