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2. Truncated BVP’s with projection BC’s

Some notations

Isolated families of connecting orbits

Truncated BVP

Error estimate
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Some notations

Consider the (local) flow ϕt generated by a smooth ODE

du

dt
= f(u, α), f : R

n × R
p → R

n.

Let O− = ξ be a hyperbolic equilibrium with dimW u
− = n−

u .

Let O+ be a hyperbolic limit cycle with dimW s
+ = m+

s .

If x+(t) is a periodic solution (with minimal period T +)

corresponding to O+, then m+
s = n+

s + 1, where n+
s is the number

of eigenvalues µ+ of the monodromy matrix

M+ = DxϕT+

(x)
∣

∣

∣

x=x+(0)
,

satisfying |µ+| < 1.
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Isolated families of connecting orbits

Necessary condition: p = n − m+
s − n−

u + 2 (Beyn, 1994).

Two types of point-to-cycle connections in R
3:

O+ O+

W u
+

W s
+W s

+

W u
+

ξ
ξ

W u
−

W s
−

W u
−

W s
−

(a) dimW u
− = 1 (b) dim W u

− = 2
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Truncated BVP

The connecting solution u(t) is truncated to an interval [τ−, τ+].

The points u(τ−) and u(τ+) are required to belong to the linear

subspaces that are tangent to the unstable and stable invariant

manifolds of O− and O+, respectively:






L−(u(τ−) − ξ) = 0,

L+(u(τ+) − x+(0)) = 0.

Generically, the truncated BVP composed of the ODE, the above

projection BC’s, and a phase condition on u, has a unique solution

family (û, α̂), provided that the ODE has a connecting solution

family satisfying the pahase condition and Beyn’s equality.
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Error estimate

If u is a generic connecting solution to the ODE at parameter value α, then

the following estimate holds:

‖(u|[τ
−

,τ+], α) − (û, α̂)‖ ≤ Ce−2 min(µ
−
|τ

−
|,µ+|τ+|),

where

‖ · ‖ is an appropriate norm in the space C1([τ−, τ+], Rn) × R
p,

u|[τ
−

,τ+] is the restriction of u to the truncation interval,

µ± are determined by the eigenvalues of the Jacobian matrix Duf at

ξ and the monodromy matrix M+.

(Pampel, 2001; Dieci and Rebaza, 2004)
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3. The defining BVP in 3D

(b)(a)

O+

w

u

x+

u

x+

v
f+

0
f+

0

w(0)w(0)

v

x+

0
x+

0

u(0)
u(1) u(1)u(0)

O+
ξ ξ

w

It has equilibrium-, cycle-, and connection-related parts.
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Equilibrium-related equations

If n−
u = 1, we use u(τ−) = ξ + εv, where



















f(ξ, α) = 0 ,

fξ(ξ, α)v − λuv = 0 ,

〈v, v〉 − 1 = 0.

If n−
u = 2, we use 〈v, u(τ−) − ξ〉 = 0, where



















f(ξ, α) = 0 ,

fT
ξ (ξ, α)v − λsv = 0 ,

〈v, v〉 − 1 = 0,

together with 〈u(τ−) − ξ, u(τ−) − ξ〉 − ε2 = 0.
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Cycle-related equations

Periodic solution:






ẋ+ − f(x+, α) = 0,

x+(0) − x+(T+) = 0.

Adjoint eigenfunction: µ = 1
µ+

u



















ẇ + fT
u (x+, α)w = 0 ,

w(T+) − µw(0) = 0 ,

〈w(0), w(0)〉 − 1 = 0 .

Projection BC: 〈w(0), u(τ+) − x+(0)〉 = 0.
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Connection-related equations

We need a phase condition to select a unique periodic solution, i.e.,

to fix a base point

x+
0 = x+(0)

on the cycle O+.

Usually, an integral phase condition is used.

For the point-to-cycle connection, we require the end point of the

connection to belong to a plane orthogonal to the vector

f+
0 = f(x+(0), α):







u̇ − f(u, α) = 0,

〈f(x+(0), α), u(τ+) − x+(0)〉 = 0.
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The defining BVP in 3D: λ = ln |µ|, s = signµ = ±1. lor eco



























u(0) − ξ − εv = 0,

f(ξ, α) = 0,

fξ(ξ, α)v − λuv = 0,

〈v, v〉 − 1 = 0.

or






































〈v, u(0) − ξ〉 = 0,

〈u(0) − ξ, u(0) − ξ〉 − ε2 = 0,

f(ξ, α) = 0,

fT
ξ (ξ, α)v − λsv = 0,

〈v, v〉 − 1 = 0,











































































ẋ+ − T+f(x+, α) = 0,

x+(0) − x+(1) = 0,

〈w(0), u(1) − x+(0)〉 = 0,

ẇ + T+fT
u (x+, α)w + λw = 0,

w(1) − sw(0) = 0,

〈w(0), w(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 = 0.
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4. Finding starting solutions with homopoty

Adjoint scaled eigenfunction.

Homotopies to connecting orbits.

References to homotopy techniques for point-to-point connections:

E.J. Doedel, M.J. Friedman, and A.C. Monteiro, [1994], “On locating

connecting orbits", Appl. Math. Comput., 65, 231–239.

E.J. Doedel, M.J. Friedman, and B.I. Kunin, [1997], “Successive

continuation for locating connecting orbits", Numer. Algorithms, 14 ,

103–124.
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Adjoint scaled eigenfunction lor eco

For fixed α and any λ, x+(τ) = x+
old(τ), w(τ) ≡ 0, and h = 0 satisfy



















































ẋ+ − f(x+, α) = 0,

x+(0) − x+(T+) = 0,
∫ 1
0 〈ẋ

+
old(τ), x+(τ)〉 = 0,

ẇ + T+fT
u (x+, α)w + λw = 0,

w(1) − sw(0) = 0,

〈w(0), w(0)〉 − h = 0,

A branch point at λ1 corresponds to the adjoint multiplier µ = seλ1 .

Branch switching and continuation towards h = 1 gives the

eigenfunction w.
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Continuation in (T, h1) for fixed α (dim W u
− = 1) lor



























u(0) − ξ − εv = 0,

f(ξ, α) = 0,

fξ(ξ, α)v − λuv = 0,

〈v, v〉 − 1 = 0.











































































ẋ+ − T+f(x+, α) = 0,

x+(0) − x+(1) = 0,

Ψ[x+] = 0,

ẇ + T+fT
u (x+, α)w + λw = 0,

w(1) − sw(0) = 0,

〈w(0), w(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 − h1 = 0.

Here, e.g. Ψ[x+] = x+
j (0) − aj and the initial connection

u(τ) = ξ + εveλuTτ .
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Continuation in (α1, h2) for fixed T (dimW u
− = 1) lor



























u(0) − ξ − εv = 0,

f(ξ, α) = 0,

fξ(ξ, α)v − λuv = 0,

〈v, v〉 − 1 = 0.











































































ẋ+ − T+f(x+, α) = 0,

x+(0) − x+(1) = 0,

〈w(0), u(1) − x+(0)〉 − h2 = 0,

ẇ + T+fT
u (x+, α)w + λw = 0,

w(1) − sw(0) = 0,

〈w(0), w(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 = 0.

When h2 = 0 is located, improve connection by the continuation in (α1, T )

and then continue in (α1, α2) with fixed T (using the primary BVP).
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Continuation in (T, h1) or (c1, c2, hk) (dim W u
− = 2) eco

The equilibrium-related part is replaced by the explicit BC






































u(0) − ξ − ε(c1v
(1) + c2v

(2)) = 0,

c2
1 + c2

2 − 1 = 0,

f(ξ, α) = 0,

fξ(ξ, α)v − λuv = 0,

〈v, v〉 − 1 = 0,

where v(1) and v(2) are independent unit vectors tangent to W u
− at ξ.

The initial connection

u(τ) = ξ + εeτTfu(ξ,α)v(1), c1 = 1, c2 = 0.
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Implementation in AUTO
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Implementation in AUTO

U̇(τ) − F (U(τ), β) = 0, τ ∈ [0, 1],

b(U(0), U(1), β) = 0,
∫ 1

0
q(U(τ), β)dτ = 0,

where

U(·), F (·, ·) ∈ R
nd , b(·, ·) ∈ R

nbc , q(·, ·) ∈ R
nic , β ∈ R

nfp ,

The number nfp of free parameters β is

nfp = nbc + nic − nd + 1.

In our primary BVPs: nd = 9, nic = 0, and nbc = 19 or 18
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Example: dim W u
− = 1

Lorenz system:


















ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − bx3,

with the standard value b =
8

3
.

The bifurcation curve in the (r, σ)-plane corresponding to the

point-to-cycle connection is first presented by L.P. Shilnikov (1980).
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Homotopy to eigenfunction

At (r, σ) = (21, 10), there is a saddle limit cycle with

x+(0) = (9.265335, 13.196014, 15.997250), T + = 0.816222,

that has

µ+
s = 0.0000113431, µ+

u = 1.26094.

Continuation in (λ, h) of the trivial solution of the BVP for the

scaled adjoint eigenfunction w(τ) detects a branch point at

λ = ln(µ+
u ) = 0.231854.

From it a nontrivial branch is followed until the value h = 1 is

reached. This gives a nontrivial eigenfunction w(t) with

w(0) = (0.168148, 0.877764,−0.448616)T, ‖w(0)‖ = 1.
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Homotopy to connection

Continue in (T, h1) until h1 = 0:

−20 −10 0 10 20 −40

−20

0

20

0 

10

20

30

40

−20 −10 0 10 20 −40

−20

0

20

0 

10

20

30

40

−20 −10 0 10 20 −40

−20

0

20

0 

10

20

30

40

x

y

x
y

x
y

O+O+O+

zzz

(a) T = 1.43924 (b) T = 1.54543 (c) T = 2.00352

Continue in (r, h2) until h2 = 0, that occurs at r = 24.0720.
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Continuation of the connection

Improve connection by the continuation in (r, T ):

0.00
0.10

0.20
0.30

0.40
0.50

0.60
0.70

0.80
0.90

1.00

0.

10.

20.

30.

40.

50.

(a)(b)

z

τ

(a) (r, T ) = (21.0, 2.00352); (b) (r, T ) = (24.0579, 3.0)
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Continue the point-to-cycle bifurcation curve in (r, σ):

0. 25. 50. 75. 100.

0.

25.

50.

75.

100.

σ

r
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Example: dim W u
− = 2

The standard tri-trophic food chain model:






















ẋ1 = x1(1 − x1) −
a1x1x2

1 + b1x1
,

ẋ2 =
a1x1x2

1 + b1x1
−

a2x2x3

1 + b1x2
− d1x2,

ẋ3 =
a2x2x3

1 + b1x2
− d2x3,

with a1 = 5, a2 = 0.1, b1 = 3, and b2 = 2.

Point-to-cycle connections in this model were first studied by

M.P. Boer, B.W. Kooi, and S.A.L.M. Kooijman, [1999], “Homoclinic

and heteroclinic orbits to a cycle in a tri-trophic food chain,” J. Math.

Biol., 39, 19–38.
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Homotopy to eigenfunction

At d1 = 0.25, d2 = 0.0125, we have an equilibrium

ξ = (0.74158162, 0.16666666, 11.997732)

and a saddle limit cycle with the period T + = 24.282248 and

x+(0) = (0.839705, 0.125349, 10.55289)

Its nontrivial multipliers are µ+
s = 0.6440615, µ+

u = 6.107464 · 102.

Continuation in (λ, h) of the secondary barnch from the branch point

λ = ln(µ+
s ) = −0.439961.

gives at h = 1 a nontrivial eigenfunction w(t) with ‖w(0)‖ = 1:

w(0) = (0.09306,−0.87791,−4.69689)T.
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and a saddle limit cycle with the period T + = 24.282248 and

x+(0) = (0.839705, 0.125349, 10.55289)

Its nontrivial multipliers are µ+
s = 0.6440615, µ+

u = 6.107464 · 102.

Continuation in (λ, h) of the secondary barnch from the branch point

λ = ln(µ+
s ) = −0.439961.

gives at h = 1 a nontrivial eigenfunction w(t) with ‖w(0)‖ = 1:

w(0) = (0.09306,−0.87791,−4.69689)T.
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Homotopy to connection

The initial solution u(τ) is found by integration in CONTENT from a

point in the plane tangent to W u
− at distance ε = 0.001 to ξ:

u(0) = (0.742445, 0.166163, 11.997732).

Integration interval T = 155.905.

Continue in (T, h1) towards a minimum of h1.

Continue in (c1, c2, h1) to get h1 = 0;

Continue in (c1, c2, h2) to get h2 = 0.
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Continuation of the connection

Improve connection by the continuations in T (and then in ε):

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

10.50

10.75

11.00

11.25

11.50

11.75

12.00

12.25

x2

x3

The connection with T = 180.0, ε2 = 10−5.
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Continuation in α1 = d1:

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

9.5

10.0

10.5

11.0

11.5

12.0

12.5

x2

x3

LP: d1 = 0.280913 and d1 = 0.208045 (LPC).
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Continue the point-to-cycle LP-bifurcation curve Thet in (d1, d2):

0.0075

0.01

0.0125

0.015

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

���

���

��
�

���
	 �
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Open questions

Cycle-to-cycle connections ?

O−

x−

u(0)

f−

0

x−

0

w−(0)

w−

u

w+

O+

f+

0

w+(0)

x+

u(1)x+

0

Should all this be integrated in AUTO ?
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To be continued
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