Home assignment for 06-12-2011 ("Dynamical Systems", MasterMath Fall 2011)

The aim of this assignment is to study the Andronov-Hopf bifurcation in the famous Lorenz system

$$
\left\{\begin{array}{l}
\dot{x}=-\sigma x+\sigma y \tag{1}\\
\dot{y}=-x z+r x-y \\
\dot{z}=x y-b z
\end{array}\right.
$$

using symbolic manipulation software, e.g. MAPLE or Mathematica, if necessary.

1. Show that for fixed $b>0, \sigma>b+1$, and

$$
\begin{equation*}
r=r_{H}=\frac{\sigma(\sigma+b+3)}{\sigma-b-1} \tag{2}
\end{equation*}
$$

the positive equilibrium of (1) exhibits an Andronov-Hopf bifurcation.
2. Prove that this bifurcation is subcritical and, therefore, gives rise to a unique saddle limit cycle for $r<r_{H}$.
(i) Write (1) as a single third-order equation

$$
\dddot{x}+(\sigma+b+1) \ddot{x}+b(1+\sigma) \dot{x}+b \sigma(1-r) x=\frac{(1+\sigma) \dot{x}^{2}}{x}+\frac{\dot{x} \ddot{x}}{x}-x^{2} \dot{x}-\sigma x^{3}
$$

(ii) Translate the origin to the equilibrium by introducing the new coordinate $\xi=$ $x-x_{0}$, where $x_{0}=\sqrt{b(r-1)}$, thus obtaining the equation

$$
\begin{equation*}
\dddot{\xi}+(\sigma+b+1) \ddot{\xi}+\left[b(1+\sigma)+x_{0}^{2}\right] \dot{\xi}+\left[b \sigma(1-r)+3 \sigma x_{0}^{2}\right] \xi=f(\xi, \dot{\xi}, \ddot{\xi}) \tag{3}
\end{equation*}
$$

where
$f(\xi, \dot{\xi}, \ddot{\xi})=-3 \sigma x_{0} \xi^{2}-2 x_{0} \xi \dot{\xi}+\frac{1+\sigma}{x_{0}} \dot{\xi}^{2}+\frac{1}{x_{0}} \dot{\xi} \ddot{\xi}-\sigma \xi^{3}-\xi^{2} \dot{\xi}-\frac{1+\sigma}{x_{0}^{2}} \xi \dot{\xi}^{2}-\frac{1}{x_{0}^{2}} \xi \dot{\xi} \ddot{\xi}+\ldots$
and the dots stand for all higher-order terms in $(\xi, \dot{\xi}, \ddot{\xi})$.
(iii) Rewrite (3) as a system

$$
\dot{U}=A U+\frac{1}{2} B(U, U)+\frac{1}{6} C(U, U, U)+O\left(\|U\|^{4}\right), \quad U=\left(\begin{array}{c}
\xi \tag{4}\\
\dot{\xi} \\
\ddot{\xi}
\end{array}\right) \in \mathbb{R}^{3},
$$

where A is a 3×3 matrix and B and C are the bilinear- and trilinear- forms, respectively. Note that A, B, and C depend on (r, σ, b). Find an eigenvector $q \in \mathbb{C}^{3}$ and an adjoint eigenvector $p \in \mathbb{C}^{3}$ of A corresponding to its purely imaginary eigenvalues $i \omega_{0}$ and $-i \omega_{0}$ (when (2) is satisfied), and such that

$$
\langle p, q\rangle=1
$$

(iv) Verify that the critical pair of the complex-conjugate eigenvalues $\lambda_{1,2}$ of A crosses the imaginary axis at $r=r_{H}$ with a positive velocity w.r.t. parameter r, i.e.

$$
\left.\frac{\partial}{\partial r} \operatorname{Re} \lambda_{1,2}\right|_{r=r_{H}}=\operatorname{Re}\left\langle p, A^{\prime} q\right\rangle>0
$$

where

$$
A^{\prime}=\left.\frac{\partial A}{\partial r}\right|_{r=r_{H}}
$$

(v) Compute the first Lyapunov coefficient l_{1} for (4) at $r=r_{H}$ using the formula

$$
l_{1}=\frac{1}{2 \omega_{0}} \operatorname{Re}\left\langle p, C(q, q, \bar{q})-2 B\left(q, A^{-1} B(q, \bar{q})\right)+B\left(\bar{q},\left(2 i \omega_{0} I-A\right)^{-1} B(q, q)\right)\right\rangle
$$

Substitute $\sigma=s+b+1$ in the resulting expression and show that $l_{1}>0$ for all positive s and b.

