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INTRODUCTION

MIJNHEER DE RECTOR MAGNIFICUS, GEACHTE DAMES EN HEREN

In my lecture, | will try to reflect on the history and current state of
art of my research field, discuss its role in the mathematical modeling
in various branches of modern Science, and sketch some implications
of recent trends for research, software development, and education.

This lecture is about mathematical tools to study deterministic
processes. What is a deterministic process? The progress of Science is
to big extent marked by our increasing ability to predict future states of
various systems. This is based on describing system states by elements
of some set X so that at a moment ¢ of time the system is in the state
x(t)E X . The set X is called the phase space of the system. The
behaviorofthe systemisadeterministic processif x(¢) isfullydetermined
by x(0), i.e. there is a family {¢'},.,of maps¢': X — X, such that

x(1) = ¢'(x(0)).

The map ¢’ is called the evolution operator of the system. It is
postulated that ¢0 is the identity map. It is further assumed that
the evolution from the state x(¢) to the state x(z+s) depends only
on the time difference s and not on the moment ¢ itself, so that
x(t+5)=¢’(x(¢)) implying ¢ =¢' 0@’ . The last property means that
the system is autonomous, i.e. its structural properties do not change
with time. The image in X of the domain of definition of the map
t+ x(t) is called the orbit (see Figure 1).

6094 Oratieboekje Kuznetsov.indd 4 04-01-13 10:03



Figure 1: An orbit of a dynamical system.

Collecting all introduced ingredients, i.e. time, phase space, and
the evolution operator, we come to the notion of a dynamical system
that is a mathematical model of a deterministic process. Marquis P.S.
de Laplace suggested that the evolution of the whole Universe is a
deterministic process:

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like the past would be present
before its eyes.

—P.S. de Laplace, A Philosophical Essay on Probabilities
Of course, de Laplace had in mind a classical mechanical system and
already this made his vision unrealistic from our point of view. However,

a significant progress in various fields of Science was achieved by
modeling of certain subsystems of the universe by dynamical systems
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and studying how their evolution depends on parameters describing
their internal properties and time-independent interactions with the
external world. Such models employed various phase spaces X,
ranging from the set of real numbers (when abundance of a certain
substance as function of time was studied) to an infinite-dimensional
projective complex space (when the evolution of the state of an isolated
quantum system between observations is analyzed). Note that mean
fields or probabilistic distributions appearing in statistical description
of large systems often evolve deterministically. We shall see later that
the relationship between determinism and predictability is much more
nontrivial than it might look.

We will first focus on a special situation when the phase space X
is the set of all n-tuples R", time ¢ is continuous, and the evolution
operator is implicitly defined by the solutions of a system of ordinary
differential equations (ODEs)

X0 =f(x(), f:R"—=R"

where [ is a smooth vector field. By a tradition going back to Sir
I. Newton, the dot denotes the derivative w.r.t. time ¢. Dynamical
systems of this type appear in many applications, since contributions
from various effects on each x, are often additive, which simplifies
the derivation of models. As a typical example, we can consider the
Brusselator, a hypothetical homogeneous chemical system composed
of substances X,B,D,E, that react according to the following irreversible
stages:

A—X
B+X—=Y+D
2X+Y —=3X
X —E
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The law of mass action leads under certain assumptions to the following
system of two differential equations

x=a-(b+Dx+x’y,

1
y=bx-x"y, a

where (x,y) are scaled concentrations of X and Y respectively.

ODEs also appear in the analysis of distributed dynamical
systems when X is a function space that has an invariant finite-
dimensional manifold, e.g. a surface composed of orbits, on which
(local) coordinates x; can be introduced. There is yet another manner
in which ODEs appear: As differential equations describing profiles of
planar travelling waves in partial differential equations (PDEs) modeling
some distributed dynamical systems.

J. Liouville proved in the 1840s that many ODEs cannot be solved
in explicit form. For example, the y-component of the solution of the
following simple system

x=1,
(2)

y=-x+y’,

(that is equivalent to the single Bernoulli equation y’=y”—x) cannot
be expressed as a finite combination of elementary functions of ¢ or
algebraic functions and integrals of such functions. The reason for this
difficulty is the nonlinearity of the system. Actually, very few nonlinear
ODEs can be solved explicitly.
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Figure 2: The phase portrait of the Bernoulli system (2).

J.H. Poincaré laid in the 1880s foundations of a qualitative
(geometric) analysis of ODEs that allows one to establish properties
of the collection of all orbits of an ODE system (called phase
portrait) even if its explicit general solution is unavailable. For
example, Figure 2 shows the phase portrait of system (2). Its
qualitative features are easily predictable by noticing that the
corresponding vector field is horizontal along parabola xzyz.

The simplest interesting orbits of ODE systems are equilibria and
cycles corresponding to stationary and periodic processes, respectively.
Other important types of orbits are homoclinic and heteroclinic orbits
that connect (possibly to themselves) equilibria and cycles. J.H.
Poincaré and 1.0. Bendixson proved that a bounded orbit of a planar
ODE (with n=2) can either approach an equilibrium, or a cycle, or a
singular cycle composed of homo- and heteroclinic orbits to equilibria.
Poincaré also recognized in the 1890s that a multidimensional ODE
system (with n >3 ) can have infinite number of isolated periodic orbits
and an individual orbit can indefinitely wander between these cycles as
t— too , without approaching any of them. This occurs, for example,
near a homocinic orbit to a cycle, when the surface composed of all
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orbits approaching the cycle as t—+e intersects transversally the
surface composed of all orbits approaching the same cycle as {— —c .
It seems, however, that he expected such a complicated phenomenon
(that we now call the Poincaré homoclinic structure) to occur only
in very special dynamical systems from Classical Mechanics, which
preserve energy and phase volume, and for which the presence of this
structure implies nonintegrability. It is also remarkable that he gave up
to sketch a cross-section of the homoclinic structure. The analysis of
orbits near the Poincaré homoclinic structure was continued by G.D.
Birkhoff in the 1930s and finished by S. Smale, Ju.l. Neimark and L.P.
Shilnikov in the 1960s.

One of the major discoveries in the mathematics of the 20th
century was that generic dissipative ODE systems can exhibit a robust
complicated behavior that has many features of a random process but is
nevertheless deterministic. Moreover, chaotic motions can be confined
to an attracting set in the phase space that is bounded and has a fractal
structure. These invariant sets were called strange attractors by D.P.
Ruelle and F. Takens in 1971. It has been noticed by E.N. Lorenz in
1963 that the deterministic nature of such processes does not mean
their practical predictability: A slightest difference in initial data leads
to very different solutions.

Figure 3 shows a strange attractor in the Rdssler prototype system

X, ==X, — X,

X, = x, + Ax,, @)
Xy = Bx, = Cx; + x,x;,

with 4=0.36, B=C=0.4.
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Figure 3: A strange attractor in the Rdssler system (3).

J.H. Poincaré also introduced the notion of bifurcation, i.e. the
qualitative change of the phase portrait of a dynamical system when
parameters of the system are slightly changed. He also prepared
all necessary tools to study one of the simplest - and thus often
occurring in applications — bifurcation, namely, the birth of a limit
cycle from an equilibrium when it changes stability in an oscillatory
manner. While Poincaré focused on the changes of special orbits
(e.g. cycles), it was A.A. Andronov who started in the 1920s to
consider bifurcations of the whole phase portrait. Figure 4 shows
this phenomenon (called the Andronov-Hopf bifurcation) in the
Brusselator model (1). Given value a, it happens when the parameter
b crosses the critical value b, =1+a’. For b<b, there exists a stable
equilibrium that becomes unstable for > b, when limit cycle is born.
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Figure 4: Andronov-Hopf bifurcation in the Brusselator model (7).

S. Smale proved in the 1960s that a generic dissipative system
can have an infinite number of limit cycles and that the set of the
bifurcation parameter values of a generic parameter-dependent system
can be very complicated, in fact fractal. Actually, he constructed a
multidimensional system such that all its small perturbations are not
structurally stable, i.e. their phase portrait changes qualitatively under
proper further parameter variations. This led usually optimistic V.I.
Arnold to very pessimistic conclusions in 1978:

For the qualitative theory of differential equations this result has approximately the same
significance as Liouville's theorem on the impossibility of solving differential equations by
quadrature for the integration theory of differential equations. It shows that the problem
of the complete topological classification of differential equations with high-dimensional
phase space is hopeless, even if restricted to generic equations and nondegenerate cases.

Most differential equations admit neither exact analytic solution nor a reasonably complete
qualitative analysis.

—V.1. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations
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Figure b illustrates complexity of bifurcation sets by presenting a
partial bifurcation set of a system of three ODEs that describe behavior
of a tritrophic food chain composed of a logistic prey, a Holling type Il
predator, and a Holling type Il top-predator, with population densities
X, X,, and x,, respectively. The corresponding nonlinear ODE system
is one of the most studied models in Theoretical Biology [Kuznetsov &
Rinaldi, 1996]. It depends on several parameters that determine intra-
and interspecies interactions.

16625~

1.325

0.65- . " B—— -
535 0.95 1.05 1.15 1.25
Figure 5: The partial bifurcation set of the ecological model (4).

In the properly rescaled variables, the system looks as follows:

X, =x r( —ﬁ)——a‘xz
b K) 1+bx |
i =x, a,x, _%_dl , @
1+bx, 1+byx,
a2x2
X, =x,| ———-d, |.
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The bifurcation set in the (K,7) -plane in Figure 5 [Kuznetsov, De Feo,
& Rinaldi, 2001] is constructed for

a,=5a,=01b=3b,=2d=04d,=00l,

and the darkness levels on it correspond to more and more complicated
cycles with the increasing number of the prey-predator oscillations per
period.

Thus, the dynamical systems theory has provided scientists with
a universal language to describe and study various deterministic
processes, identified simplest asymptotic regimes and bifurcations,
but found principle obstacles to the complete bifurcation analysis of
dynamical systems.
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NUMERICAL ANALYSIS
OF ORDNARY DIFFERENTIAL
FQUATIONS

Further progress in the theory of dynamical systems, as well as its
application to realistic models from various scientific disciplines, would
have been impossible without computers. Given a system of smooth
ODEs depending on parameters,

%= f(x,a), f:R"xR" >R’ (5)

our ultimate goal would be to construct its bifurcation diagram (i.e., to
obtain its bifurcation set in the parameter space R" and to provide all
qualitatively different phase portraits in its phase space R", as well as
to describe how these portraits bifurcate under parameter variations).
As we have seen above, this task might be impossible since the
bifurcation set can have infinite number of complex-shaped regions.
However, even a partial knowledge of the bifurcation set (as in Figure 5)
and corresponding phase portraits can provide important information
on the behavior of the model. One might thus try to explore the borders
of chaos, i.e. delimit them in the parameter space and explain which
bifurcation scenarios lead to complicated dynamics. In Figure 5, the
chaotic domain is visibly delimited by several black curves, on which
bifurcations of cycles occur and which can be computed by numerical
methods discussed below. Actually, the system (4) also has a Poincaré
homoclinic structure associated to a cycle and other homoclinic and
heteroclinic orbits.

Fortunately, bifurcation diagrams are not entirely irregular but

include canonical building blocks, common for all generic systems. All
generic bifurcations of equilibria and limit cycles in multi-dimensional
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ODEs, as well as many bifurcations of connecting orbits in one- and two-
parameter systems (e.g., with m=1,2 ) have been studied theoretically.
Here major contributions have been made by A.A. Andronov and
other members of the Nizhny Novgorod (Gorky) school, including E.A.
Leontovich, N.N. Bautin, Ju.l. Neimark, and L.P. Shilnikov. Particularly
fruitful period in the development of the bifurcation theory started in
the 1970s, when ideas and methods from the theory of singularities
of differentiable functions (e.g., normal forms, codimension, versal
deformations, etc.) have been applied to study bifurcations of phase
portraits of dynamical systems by R.F. Thom, V.I. Arnold, F. Takens,
and others.

Bifurcations can be classified by their codimension, i.e. the minimal
number of parameters needed to be tuned in order to encounter this
bifurcation in a generic ODE system. Thus, bifurcations of codim
1 occur at isolated parameter values in ODEs depending on one
parameter and on curves in the two-parameter ODEs, bifurcations
of codim 2 occur at isolated points in the parameter plane of ODEs
with two parameters, etc. The Andronov-Hopf bifurcation has
codim 1. Sometimes, it is possible to construct and study simple
canonical ODE systems that capture (at least some) key features of
bifurcation diagrams of generic systems near critical equilibrium
points for nearby parameter values. For example, in generic planar
systems depending on one parameter, the Andronov-Hopf bifurcation
happens qualitatively in the same way as in the Poincaré normal form

X = oyx, —x, +Lx,(x] +x3),
(6)
X, = X, +ax, +1x,(x] +X3),

at o, = 0 with /, # 0. Thesignofthenormalformcoefficient /, determines
whether the bifurcation is sub- or super-critical. If the system depends
on two parameters, this bifurcation occurs when one crosses a curve in
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the parameter plane. At isolated points of this curve, the normal form
coefficient /; may vanish, which leads to a codim 2 bifurcation, called
the Bautin bifurcation. 1ts normal form includes the 5th order terms,

. 2 2 2 2N\2
X, =ox, =X, + 0L, (X +x5)+ Lx, (X +x5)7, 7)

Xy, =X, + Q% +Q,X, (xl2 + xi) +1,x, (xl2 + x§ ),

and depends on two parameters. The bifurcation set of this normal
form on the (¢y,®,) -plane includes the Andronov-Hopf bifurcation
line &, =0 on which a cycle is born (sub- or supercritically), as well as
the half-parabola

for o, satisfying Lo, < 0, on which two cycles of opposite stability
collide and disappear in what is called the fold bifurcation of cycles.
This is the simplest example, when an equilibrium bifurcation of
codim 2 involves a global bifurcation of codim 1. This example shows
that codim 2 points serve as organizing centers for planar bifurcation
diagrams. Their detection and computation of the relevant normal form
coefficients allow us to predict local bifurcation diagrams near such
points in concrete ODE models. The normal forms determine which
bifurcation curves of codim 1 meet at codim 2 organizing centers.
Finally remark, that near each equilibrium bifurcation, all interesting
dynamics happen on an invariant manifold of a relatively low dimension
(determined by the number of critical eigenvalues on the imaginary
axis), where the normal form has to be computed. In the simplest
cases, all other orbits rapidly converge towards this center manifold.

Already for planar ODEs, we have to rely on a computer to obtain
information on the structure of the bifurcation set. This is particularly
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true for bifurcations of cycles and connecting orbits, but even the
analysis of equilibria in multidimensional ODEs is practically impossible
without numerical calculations.

Let us start with the problem of the computation of the normal
form coefficients for local bifurcations. If the bifurcation parameter
values and the equilibrium are known exactly, then one could try to
transform a given system to its normal form up to a certain order
symbolically, either by hand or using computer algebra software.
This, however, is rarely the case for realistic models, where the
bifurcation parameter values and the critical equilibria are known
only approximately, from numerical calculations explained below. The
situation is even more hopeless for bifurcations of periodic orbits,
which are practically never known analytically. Moreover, to analyze
bifurcations of cycles, one would apparently need to transform the
corresponding Poincaré map to its normal form, while this map and its
derivatives are only available numerically. Fortunately, based on works
by P.H. Coullet & E.A. Spiegel and G. looss published in the 1980s,
special methods (that use Fredho/m solvability conditions applied to
homological equations) have been recently developed for codim 1 and
2 bifurcations of equilibria and cycles [Kuznetsov, 1999; Kuznetsov,
Govaerts, Doedel, & Dhooge, 2005]. These methods are suitable for
the numerical evaluation of the normal form coefficients. Moreover,
they allow to completely avoid the numerical computation of the
Poincaré map and its derivatives while computing the coefficients
of the periodic normal forms for local bifurcations of cycles.

Numerical computation of either an equilibrium or a cycle (as well
as their bifurcations), or a connecting orbit, can be reduced to the
continuation of a curve in some space R". The simplest example is
the computation of a branch of equilibrium points of an ODE system
depending on one parameter. This branch is by definition a connected
set of solutions to the system of n equations F(u)= f(x,o)=0 with
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N =n+1 variables u=(x,&)e R", i.e. an implicitly defined curve.
There exist standard predictor-corrector methods to approximate
such curves, e.g. the pseudoarclength continuation, where prediction
is the tangential and the correction is done by Newton iterations
in the orthogonal plane to the prediction vector. A more difficult
problem is how to reduce the continuation of a cycle to a finite-
dimensional problem F(u)=0. Here two different approaches are
possible: Computing cycles as fixed points of the evolution operator
¢£° corresponding to (5), where Ty is the (unknown) period of the
cycle, or formulate a boundary-value problem for the corresponding
periodic solution x(¢). In the first method (that essentially is based
on the Poincaré map), the continuation of a cycle is performed as that
of a solution u=(x,7, )€ R™” to the system of n+1 equations

Pr(x)-x=0,
Y(x)=0,

(8)

where the second equation is a phase condition selecting a base point
on the cycle. In the second method, one introduces the boundary-
value problem (BVP)

. 9
E(0) - T, f(E(T). ) =0, ©)

£(0)-&()=0,
W[E]=0,

in which the last equation is again a phase condition that selects one
periodic solution among a continuum of solutions that differ by a phase
shift. This boundary-value problem has still to be discretized to obtain
a finite-dimensional continuation problem for (approximation data for)
&(t), T,, and «. Note that the true periodic solution of the original
ODEs is
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x(r) = g(Ti) .

The most popular discretization method is the piecewise-polynomial
approximation with orthogonal collocation. Together with the pseudo-
arclength continuation, it was introduced in the 1980s into the
numerica bifurcation analysis of cycles by H.B. Keller and E.J. Doedel
and implemented in one of the most efficient continuation codes -
AUTO. The BVP method is believed to work better for ODEs with slow-
fast solutions.

To compute a bifurcation curve for an equilibrium or a cycle in two-
parameter ODEs (5), we have to construct a defining system to which
the continuation algorithm can be applied. Such a defining system
should in any case contain the defining system for the equilibrium
or a cycle in question, as well as some equations determining the
bifurcation. Again two approaches are possible: Either we add to the
basic system the minimally required number of equations (equal to the
codimension of the bifurcation), or allow one to add more equations for
some auxiliary quantities describing the critical situation. For example,
to characterize an equilibrium with a zero eigenvalue of the Jacobian
matrix, we can add either one equation for its determinant to vanish,

f(x’a) = 07

det f.(x,a) =0, (10)

or a system of equations for its normalized null-vector,

fx,a)=0,
f.(x,a)v=0, (11)
<v,w>—1 =0,
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where w is any vector not orthogonal to the null-space of f.(x, ).
The defining system (10) is called the minimally augmented, while the
system (11) is the (maximally) augmented defining one. Clearly, the
minimally augmented systems are smaller. Moreover, there is a clever
method to avoid computation of the determinants: We can express
a condition for a rank drop of a big matrix via the same rank drop
of a smaller matrix that is computable by solving an auxiliary linear
bordered system. In the above case, one can substitute the equation
det det f.(x,a)=0 in (10) by the equation g(x,o)=0, where the scalar
function g is to be obtained by solving

f(xa) u ( v H 0 ) 2)
w' 0 8 1

where the bordering vectors w and u are selected to make the matrix
of this system nonsingular. If g=0, then v satisfies (11), implying
that f.(x,) is singular and its determinant vanishes. There is also
an efficient way to compute the derivatives of g w.r.t. x and «. This
bordering technique goes back to a work by A. Griewank and G. Reddin
of 1984 and is fully developed by W.-J. Beyn and W. Govaerts in the
1990s. It is standard nowadays, also for bifurcations of limit cycles
[Doedel, Govaerts, & Kuznetsov, 2003]. Moreover, auxiliary data obtained
during the continuation can be effectively reused in the computation
of the normal form coefficients for the corresponding bifurcations.

Since the early 1970s, many research groups started to develop
numerical codes to perform bifurcation analysis of their own models, as
a complement to simulations. Very few of such codes were publically
available. However, in the mid 1980s the situation has changed and
several groups started to offer free continuation and bifurcations
software. The reasons for this shift are not fully clear. It seems that most
research on bifurcation theory took place at universities or research
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institutions which were expected to make their results public. Among
several packages, two became widely known: AUTO86 and LINLBF,
developed by E.J. Doedel at Caltec (Pasadena, CA) and A.l. Khibnik at
the Research Computing Centre of the USSR Academy of Sciences
(Pushchino, Moscow Region), respectively. The codes were written in
FORTRAN and allowed the user to perform a similar bifurcation analysis
that included the one-parameter continuation of equilibria and cycles,
and detection and the two-parameter continuation of their codim 1
bifurcations. There were, however, essential differences: AUTO used
maximally augmented defining systems to continue bifurcations and
employed BVP methods for the cycle-related computations, while
LINLBF computed bifurcations via minimally extended systems
and used the numerically constructed Poincaré maps and their
derivatives for cycles. LINLBF supported some three-parameter
continuations and computed the normal form coefficients for codim
1 bifurcations of equilibria (i.e. saddle-node and Andronov-Hopf).

Systematic bifurcation analysis requires repeated continuation of
different phase objects in free parameters, detection and analysis of
their bifurcations, and branch switching based on the computation
of the normal form coefficients. Such computations produce a lot of
numerical data that must be analyzed and, eventually, presented in a
graphical form. Thus, software for bifurcation analysis should not only
be efficient numerically but should allow for interactive management
and have a user-friendly graphics interface. Another motivation for the
development of interactive bifurcation software came from the iterative
nature of the modeling, particularly in biomedical research. Here, the
dynamical models were (and are) subject to regular improvements and
revisions due to accounting for new properties and mechanisms. Thus,
a new model has to be quickly input into the software, studied, and the
resulting bifurcation diagrams tested against reality, after which the
model has to be adapted, etc. This is only possible with the interactive
bifurcation programs (for a survey, see [Govaerts & Kuznetsov, 2007]).
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The development of such programs is progressing rapidly. First
interactive computer programs for the bifurcation analysis of ODEs
appeared at the end of 1980s, when workstations and IBM-PC
compatible computers became widely available at universities and civil
research institutes worldwide.

By far the most popular in the West, continuation code AUTO86
already came with a simple interactive graphics program PLAUT tha
allowed for a graphical representation of computed data. Subsequent
versions of AUTO (94/97/2000/07p) included improved interactive data
browsers and programming tools. However, the major difficulty in
using all versions of AUTO is the analysis of detected bifurcation points
and switching at these points to the continuation of other bifurcation
curves, which requires browsing of several output files and a good
understanding of their formats. No normal form coefficients were
computed in the first versions of the code. AUTO used the BVP approach
to the continuation of cycles and their bifurcations. For the continuation
of bifurcations, maximally augmented defining systems were used.

The first user-friendly interactive program for bifurcation
analysis was LOCBIF [Khibnik, Kuznetsov, Levitin, & Nikolaev, 1993]
developed for PCs at the Research Computing Center of the USSR
Academy of Sciences (Pushchino, Moscow Region), see Figure 6.
The program was based on the code LINLBF. The software allowed
for an easy switching between the computation of various curves
at detected bifurcation points. The user was able to manipulate
individual curves, which where stored separately in the archive.
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Figure 6: LOCBIF

At about the same time, the lIron Curtain disappeared and
researchers from East and West started to freely exchange results,
methods, and software for the analysis of dynamical systems. At a
series of international conferences (Leuven 1989; Wirsburg 1990)
personal contacts between different schools were established that
played a crucial role in further developments. The second generation
of the interactive programs for bifurcation analysis was represented
by software environments which were developed by joint forces from
West and East. Figure 7 shows a screen snapshot of CONTENT, the
interactive software developed by Yu.A. Kuznetsov and V.V. Levitin at
CWI (Amsterdam) with major contributions by W. Govaerts and E.
Doedel. The software was first to run on all popular workstations under
UNIX/X11 and on PCs under MS-Windows and linux. Remarkably, the
portability of the userinterface was achieved by employing the VIBRANT
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GUI libraries developed at the National Center for Biotechnology
Information (Bethesda, USA) for totally different purposes.

= Content 15
Select Window Type Compute Oplions Help

Figure 7: CONTENT

CONTENT supported the continuation of equilibria and their
bifurcations of codim < 3 with both minimal and various augmented
defining systems [Govaerts, Kuznetsov, & Sijnave, 2000]. For the
continuation of cycles, the BVP methods were used. For the first
time, CONTENT supported the normal form computations for many
equilibrium bifurcations. The software provided extensive storage,
export and import facilities for computed curves and bifurcation
diagrams in numerical and picture formats. Switching between various
bifurcating objects at special points was easy and flexible in CONTENT,
that is still in use at hundreds of institutions all over the world.
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Figure 8:  MATCONT

The latest bifurcation software MATCONT (see Figure 8) belongs
to the third generation of the interactive tools and is a product of the
longterm scientific collaboration with W. Govaerts [Dhooge, Govaerts,
& Kuznetsov, 2003; Dhooge, Govaerts, Kuznetsov, Meijer, & Sautois,
2008]. This software inherited the best features of CONTENT and
AUTO. In particular, most efficient minimally augmented defining
systems based on the bordering method in combination with the BVP
approach to cycles were proposed and implemented in MATCONT
[Doedel, Govaerts, & Kuznetsov, 2003]. The software supports the
continuation of equilibria and cycles and all their codim 1 bifurcations
[Beyn, Champneys, Doedel, Govaerts, Kuznetsov, & Sandstede, 2002]
together with all appropriate branch switching [Kuznetsov, Meijer,
Govaerts, & Sautois, 2008]. The software computes the normal form
coefficients for the bifurcations of codim < 2 of equilibria [Kuznetsov,
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1999] and cycles [Kuznetsov, Govaerts, Doedel, & Dhooge, 2005],
as well as the interactive initialization and continuation of codim
1 homoclinic orbits with detection of many codim 2 homoclinic
bifurcations (first tested in AUTO97) [De Witte, Govaerts, Kuznetsov, &
Friedman, 2012]. This allows for a rather complete bifurcation analysis
of the two-parameter ODEs. Moreover, the MATLAB platform selected
for the development of MATCONT solved many compatibility problems
and made MATCONT to large extent a machine-independent tool.
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TRENDS AND VISIONS

What are the perspectives of the numerical bifurcation analysis
of dynamical systems ? Which new methods and tools should we
expect? How should we teach bifurcation theory ? In which way
should the development of the bifurcation software be organized ?

If we have in mind software for generic ODE systems, then it seems
possible to achieve in the nearest future the long-standing goal to fully
support the two-parameter analysis of equilibria, cycles, and homoclinic
orbits to equilibria. For that, we have to develop and implement the
branch switching to relevant homoclinic orbits at codim 2 equilibrium
and homo- /hetero-clinic bifurcations. The numerical methods to
start the continuation of homoclinic orbits from codim 2 equilibrium
bifurcations are under development, while those for switching at the
global codim 2 bifurcations are poorly understood and require more
analytical work. The computation of orbits connecting equilibria
to cycles and cycles to cycles also requires additional work. The
corresponding defining systems are known for the three-dimensional
cases [Doedel, Kooi, van Voorn, & Kuznetsov, 2008 and 2009] but no
robust methods exist for n> 3, particularly for the initialization. There
are more open questions regarding the computation of two-dimensional
invariant manifolds of equilibria and cycles, where the BVP-approach
has been recently successfully applied but not yet implemented into
any standard software. There are still no robust methods to continue
invariant tori, since they have an intrinsic tendency to lose smoothness.

It should be noted that advances in the bifurcation theory of
dynamical systems and in the software development are nontrivially
connected. To begin with, the progress in the theoretical analysis of
bifurcations allows for the development of new numerical tools for
detection and analysis of these bifurcations in concrete ODE models.
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By the way, actual implementation of new theoretical methods is
the ultimate check for their correctness: In numerous cases such
implementation revealed serious errors in the theoretical constructions.
Actually, the modern theory of dynamical systems has an essential
experimental component since many parameter-dependent normal
forms can be derived analytically but cannot be studied without
computer assistance (from symbolic manipulation and extensive
simulations to numerical continuation and normalization). Probably,
the most famous example is the study of the approximating normal
form for the Neimark-Sacker bifurcation of cycles with resonance 1:4,
where various analytical results by V.I. Arnold and A.l. Neishtadt were
complemented by the numerical bifurcation analysis first performed by
A.l. Khibnik and F.S. Berezovskaya at the Research Computing Center
of the USSR Academy of Sciences in Pushchino and later extended
by B. Krauskopf at Groningen. There are many other problems in the
bifurcation theory, where an initial breakthrough could only be achieved
via serious computations, e.g. [Kuznetsov & Meijer, 2006; Gonchenko,
Kuznetsov, & Meijer, 2005]. A challenging example is the long-standing
problem of the accumulation of 1:2 resonances that we discovered in
1991 by studying models of seasonally forced food chains [Kuznetsov,
Muratori, & Rinaldi, 1992; Rinaldi, Muratori, & Kuznetsov, 1993].
Hopefully, this problem will have the fate of the Feigenbaum universality
in the accumulation of the period-doubling bifurcations of 1D maps,
that was first discovered in simple ecological models, understood with
the help of nontrivial numerical computations, and finally proved with
complex-analytic methods. In such computations new integration tools
based on symbolic and automatic differentiation and high-precision
arithmetic will be necessary to deal with exponentially small effects.

Itis then obvious that numerical bifurcation analysis is situated at the
interface of pure and applied mathematics, and software engineering.
Meanwhile, this explains why it is so difficult to get a financial support
forresearch in the numerical bifurcation analysis — it does not fit naturally
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into the standard classification of research fields. After 1999, for some
reasons, Belgian Research Foundation — Flanders (FWO) understands
better than NWO and STW in The Netherlands this special position of
numerical bifurcations analysis. Many important results in my research
were achieved then in the close cooperation with W. Govaerts and our
joint PhD students based at Gent University. On the contrary, due to
absurd abolishing of departmental PhD budgets at Utrecht and other
Dutch universities, we have lost many talented young people interested
in the numerical bifurcation analysis who got positions elsewhere.

The special nature of the numerical bifurcation analysis also means
that we should teach students to study deterministic processes in
a different way, namely let them learn bifurcation theory, numerical
analysis, and software in a series of interconnected courses. My book
Elements of Applied Bifurcation Theory [Kuznetsov, 2004] (now in 3rd
edition and recently translated into Chinese) is a step in this direction,
together with other book projects and new courses at Bachelor and
Master level. Moreover, the (PhD) students should be directly involved
into further development of the standard software, since it is the best
way to fully grasp the theory, understand numerical methods, and be
able to develop and test them on concrete models, thus contributing
to their analysis.

Another trend in the bifurcation analysis is the development of
special numerical and software tools for more “exotic” dynamical
systems than smooth ODEs, e.g. partial and delay differential
equations, algebraic-differential equations, non-smooth differential
equations, and integro-differential equations. There are many
numerical studies of individual deterministic models of these classes.
However, the systematic development of standard bifurcation software
for most of them is still to be started. Note that the development of
the standard bifurcation software for the non-smooth Filippov ODEs
is ahead of that for other classes, see e.g. [Dercole & Kuznetsov,
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2005; Piironinen & Kuznetsov, 2008]. Such nonsmooth ODEs
naturally appear while sudying effects of the relay adaptive control on
ecological systems [Dercole, Gragnani, Kuznetsov, & Rinaldi, 2003].

Biomedical applications lead to many interesting dynamical
systems. For example, integro-differential equations with delays arise
in the modelling of cortex on which we collaborate with the Clinical
Neurophysiology group of Michel van Putten (MIRA, UT). Non-smooth
delay differential equations are used at MIRA by the Biomechanical
Engineering group (Bart Koopman and Herman van der Kooij)in modeling
of bipedal walking. Hopefully, numerical bifurcation analysis will lead toa
better understanding of dynamical phenomena in these research areas.
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BIFURCATIONS IN
NEUROSCIENCE

We now come to a topic that is directly related to my appointment
at the Department of Applied Mathematics of the University of
Twente, i.e. bifurcation analysis in the Computational Neuroscience.

Based on experiments in giant squid (Loligo pealei) axon, A.L.
Hodgkin and A.F. Huxley built in 1952 the first quantitative model of
the electric excitability of neurons. Their model described the behavior
of the neural trans-membrane potential and three ionic currents
(Na, K, and “leak”) through the membrane. They discovered that the
conductances for the currents were not constant but rather functions
of the membrane potential and this voltage dependence was the
key to understanding spikes. Separating slow and fast motions, it is
possible to reduce the 4D Hodgkin- Huxley ODE to just a planar ODE
system for the voltage and one “recovery” current. Major properties
of this 2D system - particularly its “excitability” — can be captured
by a very simple polynomial system proposed by R. Fitz- Hugh and
J. Nagumo in beginning 1960s. If one takes into account the axon
length and rescales variables, the model assumes the form of a
nonlinear reaction-diffusion PDE system that describes voltage 7 and
recovery variable W as functions of time and position along the axon:

vV 9V
— = - f(V)-W,
at  ox’ e
13
aa—W=b(V—yW), (13)
t

where f(V)=V(V—a)(V-1) with 0<a<1 and b>0, y<<1. Numeri-
cal bifurcation methods were actively used to study this and similar
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local and distributed neural models. For example, it was recognized

that the profile and the propagation speed of a travelling nerve impulse
in (13),

Ve, x)=v(&), W(t,x)=w(&), E=x+ct,

can be computed numerically as a homoclinic solution (approaching
the origin as f—)ioo) and a bifurcation value of the parameter ¢ in
the corresponding ODE wave system:

v=u,
u=cu+ f(v)+w,

w=20—yw),
C

where the dots denote the derivative w.r.t. f In fact, A.L. Hodgkin and
A.F. Huxley found the pulse profile and speed using a hand calculator. In
1980s it was shown [Kuznetsov, 1994] that chaos related to Shilnikov's
and Belyakov’'s saddle-focus homoclinic bifurcations is responsible
for the appearance of complicated travelling waves that look like
coupled impulses (see Figure 9). Special efforts have been made to
develop robust numerical methods for homoclinic bifurcation analysis
[Champneys, Kuznetsov, & Sandstede, 1996] and their implementation
in AUTO and MATCONT.

Figure 9: Double pulse.

In reality, various individual neurons are connected into
complicated networks. Since the number of neurons and synapses
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in even a small piece of cortex is huge, spatial and temporal
coarse graining lead to so-called neural field models in which the
average membrane potential of neural populations, as opposed
to individual neuronal characteristics, are studied. An example is
provided by the following delayed integro-differential equation

ﬂ(z,x)=-aV(z,x)+fw(x,x')f(v(¢-rO R l,x’))dx', xEQ, (15)
ot o c

where V(t,x) is the potential at time ¢ in position x, whose intrinsic
dynamic is a decay with exponent «, while the functions wand f
describe connectivityandactivationinthe neuraltissue. Thetransmission
delay is due to a finite propagation speed ¢ and a constant synaptic
delay 7,. In the simplest case, the spatial domain Q is supposed to
be a finite interval, but more realistic configurations are possible. The
main purpose of such models is to study collective behavior of the
neurons, e.g. predict oscillations that might correspond to epilepsy
and analyze their dependence on neural connections. We have recently
demonstrated how to interpret this model as an abstract delay equation
that defines a dynamical system on an appropriate infinite-dimensional
function space X. This allowed us to apply the general machinery of
the dynamical systems theory, including the center manifold reduction
and normalization, and rigorously compute the normal form coefficients
for Hopf and double Hopf bifurcations in this model. An example
of a transient to a stable oscillatory regime is shown in Figure 10.

Figure 10: A transient to oscillations.
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Clearly, much extrawork has to be done to bridge a huge gap between
the individual neuron level and the coarse grain level of the neural field.
This would lead to a better understanding how local changes in neural
connectivity affect global brain oscillations, e.g. it will help us to match
a neural field model for neocortex with electroencephalography (EEG)
data of patients suffering from intractable focal neocortical epilepsies.
Such models should generalize equation (15) and take into account
known connectivities between excitatory and inhibitory cells within
different layers of the cortex, as well as its inhomogeneity. This research
will be conducted in close cooperation with M. van Putten (MIRA, UT).
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The Department of Mathematics of Utrecht University is since 1999
my base where advances in the numerical bifurcation theory and the
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1 In this lecture | deliberately did not consider numerical methods and software for bifurcation analysis of iterated
maps, see [Govaerts, Khoshsiar Ghaziani, Kuznetsov, & Meijer, 2007; Khoshsiar Ghaziani, Govaerts, Kuznetsov, &
Meijer, 2009] and references therein.
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