Cl_matcont : A continuation toolbox in Matiab

A. Dhooge and W.

Govaerts
Department of Applied
Mathematics and Computer
Science
University of Gent
Krijgslaan 281-S9
B-9000 Gent, Belgium

Annick.Dhooge@rug.ac.be

ABSTRACT

CL.MATCONT is a Matlab continuation package for the nu-
merical study of a range of parameterized nonlinear prob-
lems. In the case of ODEs it allows to compute curves of
equilibria, limit points, Hopf points, limit cycles and period
doubling bifurcation points of limit cycles. All curves are

computed by the same function that implements a prediction-

correction continuation algorithm based on the Moore - Pen-
rose matrix pseudo-inverse. The continuation of bifurcation
points of equilibria and limit cycles is based on bordering
methods and minimally extended systems. Hence no addi-
tional unknowns such as singular vectors and eigenvectors
are used and no artificial sparsity in the systems is created.

The inherent sparsity of the discretized systems for the
computation of limit cycles and their bifurcation points is
exploited by using the standard Matlab sparse matrix meth-
ods.

CL.MATCONT furthermore allows to compute solution bran-
ches to underdetermined systems of nonlinear equations and
parameterized boundary value problems.

Keywords

continuation, Matlab, bifurcation

1. INTRODUCTION

Numerical continuation is a well - understood subject, see
e.g. [1], [2], [4], [5), [9]. The idea is as follows. Consider a
smooth function F : R** — R™. We want to compute a
solution curve of the equation F(x) = 0. Numerical contin-
uation is a technique to compute a sequence of points which
approximate the desired branch. Like most continuation
algorithms, CL_MATCONT implements a predictor-corrector
method; for details we refer to the documentation available
on the web.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2003 Melboume, Florida USA

© 2003 ACM 1-58113-624-2/03/03...$5.00.

161

Yu. A. Kuznetsov,W.
Mestrom and A.M.Riet
Mathematisch Instituut
Universiteit Utrecht
Boedapestlaan 6
3584 CD Utrecht, The
Netherlands

kuznetsov@math.uu.nl

However, the existing software packages such as AUTO (3],
CONTENT [6] require the user to rewrite his/her models in
a specific format which complicates the export of results,
graphical representation etcetera.

The aim of CL_MATCONT is to provide a continuation tool-
box which is compatible with the standard Matlab ODE
representation of differential equations. This toolbox is de-

veloped with the following targets in mind:

e detection of singularities via test functions
o singularity-specific location code
e processing of regular and singular points
e support of adaptive meshes

e support of symbolic derivatives

support for sparse matrices

Earlier versions of the toolbox are described in [8, 7]. The
current version of the package is freely available for down-
load at:

http://allserv.rug.ac.be/~ajdhooge/research.html

It requires Matlab 5.3 or 6.* to be installed on your com-
puter. A manual of CLLMATCONT in PostScript format is
also available on the web.

In the present paper we concentrate on a technical issue,
namely the implementation in Matlab of the computation of
bialternate matrix products. Furthermore we provide two
examples of the use of cl_-matcont; for more details and up-
dates we refer to the above URL.

2. SINGULARITIES AND TEST FUNCTIONS

The main idea to detect singularities is to define smooth
scalar functions along (and near) the solution curve, which
have regular zeros at the singularity points. These functions
are called test functions. Suppose we have a singularity S
which is detectable using a test function ¢ : R**! — R. Also
assume we have found two consecutive points z; and z;+1
on the curve

F(z) =0, F:R""' SR (1)
The singularity S will then be detected if
$(zi)p(zit1) <O (2)

Having found two points z; and z;+1 one may want to
locate the point z* where ¢(z) vanishes most accurately; we
implemented by default a one-dimensional secant method to
locate ¢(z) = 0 along the curve. Notice that this involves
Newton corrections at each intermediate point.

In fact, a singularity may depend on two types of test
functions: vanishing (i.e. having a regular zero at the bifur-
cation point) and non-vanishing (which must be nonzero).
To represent all singularities we introduce a singularity ma-
triz (as in [6]). This matrix is a compact way to describe
the relation between the singularities and all test functions.

In some cases the default location algorithm can have
problems to locate a bifurcation point. The default loca-
tor may have problem to reach convergence (the branching
point in Section 5 is an example). Therefore we provide a
possibility to define a specific location algorithm for a par-
ticular bifurcation.

3. SOFTWARE

3.1 Continuer

The syntax of the continuer is:
[x,v,s,h,f] cont(’curve’, x0, v0, options);
curve is a Matlab m-file where the problem is specified (see
section 3.2).
x0 and vO0 are respectively the initial point and the tangent
vector of the initial point where the continuation starts.
options is a structure as described in section 3.2.3.
The arguments v0 and options can be omitted. In this case
the tangent vector at x0 is computed internally and default
options are used.

The function returns:

x and v are the points and their tangent vectors of the curve.
Each column in x and v corresponds to a point on the curve,
while the rows are the elements.

s is an array with structures containing information about
the found singularities.

h is used for output of the algorithm, currently this is a ma-
trix with for each point a column with the following compo-
nents :

e The stepsize used to calculate this point (zero for initial
point and singular points).

e The number of Newton iterations is the number of lo-
cator iterations for singular points.

e Thetest function values are the values of all active test
functions.

f can be anything depending on which curve file is used.

3.2 Curve file

The continuer uses a special m-file where the problem is
specified and which is coded by the user. This file, further
referred to as curve.m, contains the following sections (an
asterisk indicates that it is a required part of the curve file):

e Problem definition (*)
e Options (*)
¢ Default processor (*)

e Symbolic derivatives of the problem

162

Test functions

Special processors

Locators

¢ Singularity matrix

e User space

e Adaptation
3.2.1 Problem definition

The problem is coded in such a way that a call to curve (x)
returns F(z) evaluated at point z. Point z is a column
vector of size n. Normally the return value must be a vector
of size n— 1. If the return value is empty ([1), the continuer
considers this as a failure to compute F(z) and tries to make
a smaller prediction step.

3.2.2 Symbolic derivatives

To increase the speed and/or improve accuracy of the al-
gorithm one can provide symbolic derivatives of F(z). The
option SymDerivative indicates to which order the deriva-
tives are provided.

If SymDerivative> 1, then a call to curve(’jacobian’,
x) must return the n — 1 x n Jacobian matrix evaluated at
point x.

If SymDerivative> 2, then a call to curve(’hessians’,
x) must return a 3-dimensional (n x (n — 1) x (n— 1)) array

H such that H(i, j, k) = %;ﬂag’}
If SymDerivative> 3, then a call to curve(’der3’,x)

3% F;(x)

0z ;0x) 0z
As with computations of F(z) empty return values of the
above calls imply decreasing the step size.

3.2.3 Options

It is possible to specify various options. A call
to curve([],’options’) must return a structure created
with contset. The command options = contset will ini-
tialize this structure. Options can then be set using
options = contset(options, optionname, optionvalue).
Here optionname is an option from the following list.

must return a 4-dimensional array of

MinStepsize: the minimum stepsize to compute the next
point on the curve (default: 107%)

MaxStepsize: the maximum stepsize (default: 0.1)
InitStepsize: the initial stepsize (default: 0.01)

FunTolerance: tolerance of function values:
||F(z)]] < FunTolerance is the first convergence cri-
terium of the Newton iteration (default: 1079)

VarTolerance: tolerance of coordinates: v
|lz|| € VarTolerance is the second convergence cri-
terium of the Newton iteration (default: 107%)

TestTolerance: tolerance of test functions (default: 107%)

MaxNewtonlters: maximum number of Newton-Raphson
iterations before switching to Newton-Chords in the
corrector iterations (default: 3)

MaxCorrlters: maximum number of correction iterations
(default: 10)

MaxTestIters: maximum number of iterations to locate a
zero of a testfunction (default: 10)

MaxNumPoints: maximum number of points on the curve
(default: 300)

CheckClosed: number of points indicating when to start
to check if the curve is closed (0 = do not check) (de-
fault: 50)

SymDerivative: the highest order symbolic derivative which

is present (default: 0)

Increment: the stepsize to compute the derivatives numer-
ically (default: 10~°)

Singularities: boolean indicating the presence of test func-
tions and singularity matrix (default: 0)

Locators: boolean vector indicating the user has provided
his own locator code to locate zeroes of test func-
tions.Otherwise the default locator will be used (de-
fault: empty).

WorkSpace: boolean indicating to initialize and clean up
user variable space (default: 0)

Adapt: number of points indicating when to adapt the prob-
lem while computing the curve (default: 0=do not
adapt)

IgnoreSingularity: vector containing indices of singulari-
ties which are to be ignored (default: empty)

3.2.4 Summary

In the following table one can see what calls can be made
to the problem file and which options are involved.
Syntax of call What it should do
curve(x) return F(x)
curve(’options’) return option vector
curve(’jacobian’,x) return Jacobian at x
(SymDerivative> 1)
return Hessians at x
(SymDerivative> 2)
return 3th order derivatives
at x
initialize user variable space
(WorkSpace)
destroy user variable space
(WorkSpace)
return singularity matrix
(Singularities)
run processor code of singula-
rity i at x(Singularities)
run adaptation code of
problem (Adapt)

curve(*hessians’,x)
curve(’der3’,x)
curve(’init’,x,v)
curve(*done’)
curve(’singmat’)
curve (’process’,i,x)

curve(’adapt’,x,v)

163

What it should do
return evaluation
of testfunctions
ids at x
(Singularities)
return located sin-
gularity and
tangent vector
(Locators)
Initialize data for
testfunctions and
set some general
singularity data

4. THE BIALTERNATE PRODUCT

If A, B are n x n matrices then A® B is an m X m matrix
where m = n(n — 1)/2. Its entries ([4],p. 93) are given by

1{ bix bu }
3)

5 Qi ajl
where the indices are pairs of variables (4, 7), (k,1) with n >
i>j>landn>k>12>1.

The special case of a bialternate product of the form 2A®
I, is so important that we simply call it the biproduct of A.
From (3) we infer:

Syntax of call
curve (*testf’,ids,x,v)

curve(’locate’,i,x1,x2,v1,v2)

curve(’defaultprocessor’,x,v,s)

Qi
bjx

ait

(A B)g,)y = b,

—ail if k=7,
ik ifk#iand =7,
o _ aii +aj; fk=iandl =4
(A In) iy = aji if k=1iand!# j, (4)
—Qjk ifl= i,
0 else.

4.1 Indexing strategy in 2401,

An important bifurcation on an equilibrium curve f(u,a) =
0 of an ODE is the Hopf bifurcation where f, has a conju-
gate pair diw of pure imaginary eigenvalues. In fact, ma-
trices with zero - sum pairs of eigenvalues are important in
several other bifurcation contexts as well.

A test function for a zero - sum pair of eigenvalues is the
determinant of 2f, ® In, cf. [4], §4.5. This test function
covers both the Hopf case and the neutral saddle case (two
real eigenvalues with sum zero). We avoid the computation
of the eigenvalues because it is well known that they are not
analytic functions of the entries of the matrix.

During the computation of some curves (at present equi-
librium, limit point and Hopf) we evaluate the determinant
of 2f. ® I, at each computed point. To avoid the repetition
of index computations we build the matrices of index values
before actually starting the curve computation. Also, we
exploit the sparsity of 2f, ©® I, which is due to the spar-
sity of I..The computation of 2f, ® I, at each point of the
curve then merely involves the evaluation of the three index
matrices and a matrix addition and subtraction.

We first build an n X n matrix with entries A(¢) = ¢. The
Matlab command

a=reshape(1:n~2,n,n)}

builds such a matrix. For n = 3 we get:

A=

1 4 7
2 5 8
3 6 9

We define a Matlab function bialt(A) which computes
the indices of the nonzero entries of the biproduct and stores
them in 3 square index matrices A1, A2 and A3 of dimension
n(n — 1)/2. Explicitly

’ aj; ifk=iand!l=j
(Den ={ 9 B ©®
aqy if k‘ = j,
(A2 pwny = e ifl=4, (7
0 else.
aix ifk#iandl=j,
_ a; ifk=7and!l=yj,
(A3) G jykpy = ay ifk=iandl#J, (8)
0 else.

These are full matrices. However the biproduct of f, with
dimension n{n—1)/2 has only n{n—1)(2n—3)/2 functionally
nonzero entries, so for large n it is rather sparse. Therefore
exploiting the sparsity is recommended. In Matlab the com-
mand [I,J,V]=£find(X) returns row and column indices of
the nonzero entries in the matrix X and returns also a vec-
tor containing the nonzero entries in X. This is done for
the three matrices Al, A2, A3 and the results are saved in
the global variable of the computed curve eds (=equilibrium
description). In the case of an equilibrium curve this is im-
plemented by the commands:

[A1,A2,A3] = bialt(A);

[eds.BiAlt_M1_I,eds.BiAlt_M1_J,eds.BiAlt_Mi_V]=

find(A1);

[eds.BiAlt_M2_I,eds.BiAlt_M2_J,eds.BiAlt_M2_V]=
find (A2);

[eds.BiAlt_M3_I,eds.BiAlt_M3_J,eds.BiAlt_M3_V]=
find(A3);

These indices are used to build a sparse matrix. The mat-
lab command S=sparse(I,J,V) uses the rows of [I,J,V] to
generate an maz (I)xXmaz(J) sparse matrix. The two integer
index vectors I and J and the real entries vector V, all have
the same length, which is the number of the nonzeros in the
resulting sparse matrix S. The computation of the determi-
nant of 2f, ® I, at each point of the curve then involves the
evaluation of the three index matrices and a matrix addition
and subtraction. It is illustrated by the following code:

A=J(:,1:ndim-1);%J(acobian) = f_u
Al=sparse(eds.BiAlt_M1i_I,eds.BiAlt_M1_J,
A(eds.BiAlt_M1_V));
A2=sparse(eds.BiAlt_M2_I,eds.BiAlt_M2_J,
A(eds.BiAlt_M2_V));
A3=sparse(eds.BiAlt_M3_I,eds.BiAlt_M3_J,
A(eds.BiAlt_M3_V));

out = det(A1-A2+A3);

4.2 Indexing strategy in Ao A

A test function for the Neimark-Sacker bifurcation is the
determinant of the bialternate product matrix M ©®M (special
case of (3)) where M is the monodromy matrix. From (3)
we infer that M ©® M € R™*™ is given by
‘ msi Mjk

mi

(M O M),k = Mk

= MjlMik — Ml Mjk

(9)

164

where the indices are pairs of variables (¢, j), (k,!) with n >
i>j>landn>k>1>1) .

Again, to avoid the repetition of index computations we
build the matrices of index values before actually starting
the curve computation. The computation of M © M at
each point of the curve then just involves the evaluation of
four index matrices and two entry-by-entry products and
one matrix subtraction.

We define the Matlab function bialtaa(nphase) where’
nphase is the dimension of the vector containing the state
variables, computes the indices of the nonzero entries of the
bialternate product M®M. The output of bialtaa(nphase)
consists of 4 full square index matrices M1, M2, M3 and
M4 of dimension n(n—1)/2. M1, M2, M3 and M4 contain
respectively the indices of the elements mji, mix, my and
mjk. Those four matrices are saved in the global variable of
the limitcycle 1ds (=limitcycle description). The computa-
tion of M ©® M is then given by

A = A(lds.bialt_M1).*A(lds.bialt_M2)-
A(1lds.bialt_M3).*A(1ds.bialt_M4);

5. CONTINUATION OF AN ODE EQUILIB-
RIUM IN A FREE PARAMETER

We show how to continue an equilibrium of a differen-
tial equation defined in a standard Matlab ODE file. Fur-
thermore, this example illustrates the detection, location,
and processing of singularities, in particular the detection
of the Hopf bifurcation using the determinant of the biprod-
uct 2f, © I,. We note that the standard Matlab odeget
and odeset only support Jacobian matrices w.r.t. phase
variables coded in the ode-file. However, we also need the
derivatives with respect to the parameters. It is also useful
to have higher-order symbolic derivatives available.

To overcome this problem, the package contains new ver-
sions of odeget and odeset which support Jacobians with
respect to parameters (Jacobianp) and higher-order deriva-
tives. The new routines are compatible with the ones pro-
vided by Matlab.

We consider the differential equation

%=f(u,a), ueR"a€R f:R"™ R" (10)

We are interested in its equilibrium curve, i.e. f(u,a) =0.
The defining function is therefore:

F(z) = f(u,a) =0 (11)

with z = (u,a) € R**!. We note that the number of state
variables and parameters is fixed.

An ODE file is an m-file function to define a differen-
tial equation problem. It is expected to respond to the ar-
guments ODEFILE (t, y, flag, pl, p2, ...), where t is
the integration variable, y is a vector containing the val-
ues of the state variables, flag (ex. ’jacobian’, ’jacobianp’,
’hessian’, ’init’, ...) is a string indicating the type of in-
formation that the ODE file should return and p1, p2,...
are additional parameters that the problem requires.

As an example we consider a 4-point discretization of the
Bratu-Gelfand BVP(see [4]). This model is defined as fol-
lows:

y — 2z + ae”

T —2y+ aev. (12)

il

Figure 1: Equilibrium curve of bratu.m

It has 2 state variables z, y and one parameter «. This sys-
tem has an equilibrium at (z,y,«) = (0,0,0) which we will
continue with respect to o. The ODE file bratu.m describes
this problem. In this description a full Jacobian is defined
symbolically. The Hessian is not provided, so the continuer
computes the second order derivatives internally by finite
differences.

The equilibrium curve file has to ’know’ which ode file to
use, the values of all state variables, the value of all parame-
ters and which parameter is active. This is provided by the
command [x0,v0]=init.EP_EP(’bratu’, [0;0], [0],[1])
which stores its information in a global structure eds and
returns an initial point x0 and empty tangent vector vO.

Now one starts the continuation with the command

[x,v,s,h,f]=cont (’equilibrium’, x0).

The equilibrium curve continuation finds three bifurcations;
a limit point at (z,y,a) =~ (1.0;1.0;0.37), a Hopf (neutral
saddle) at (z,y, @) = (2.0;2.0;0.27) and a branching point
at (z,y,a) ~ (3.0;3.0;0.15). The resulting curve is plotted
in Figure 1. We note that the branching bifurcation shows
up as a discretization artifact.

6. CONTINUATION OF A SOLUTION TO
A BOUNDARY VALUE PROBLEM IN A
FREE PARAMETER

Discretized solutions of PDE’s can also be continued in
CL_MATCONT. We illustrate this by continuing the equilib-
rium solution to a one-dimensional PDE. The curve type is
called ’pde.1’.

The Brusselator is a system of equations intended to model
the Belusov - Zhabotinsky reaction. This is a system of
reaction-diffusion equations that is known to exhibit os-
cillatory behavior. The unknows are the concentrations
X(z,t),Y (z,t), A(z,t) and B(z,t) of four reactants. Here
t denotes time and z is a one - dimensional space variable
normalized so that = € [0, 1]. The length L of the reactor is
a parameter of the problem. In our simplified setting A and
B are constants.

The system is described by two partial differential equa-
tions:

X - —g-g-%’{—+A—(B—1)X+X2Y (13)
& = #&E+BX-XY
with z € [0,1], ¢ > 0. Here D,, D, are the diffusion coef-

165

ficients of X and Y. At the boundaries x = 0 and z = 1
Dirichlet conditions will be imposed:

X0,t)=X(1,t)=A
{ Y(0,t) =Y(1,t) =B

Aa
We are interested in equilibrium solutions X (z) and Y (x)
to the system and their dependence on the parameter L.
The approximate equilibrium solution is:

X(z) A+ 2sin(nz)
{ Y () 8 — % sin(nz) (15)

2

The initial values of the parameters are: A =2, B = 4.6,
D; = 0.0016, D, = 0.08 and L = 0.06. The initial solu-
tion (15) is not an equilibrium, but the continuer will try
to converge to an equilibrium close to the initial solution.
We use equidistant meshes. To avoid spurious solutions (so-
lutions that are induced by the discretization but do not
actually correspond to solutions of the undiscretized prob-
lem) one can vary the number of mesh points by setting the
parameter N. If the same solution is found for several dis-
cretizations, then we can assume that they correspond to
solutions of the continuous problem.

The second order space derivative is approximated us-

(14)

ing the well-known three-points difference formula: g—ié
7% (fic1 — 2fi + fiy1), where h = w51, Where N is the num-
ber of grid points on which we discretize X and Y. So N is
a parameter of the problem and 2N is the number of state
variables (which is not fixed in this case).

The Jacobian is a sparse 5-band matrix. In the ode-file de-

scribing the problem the Jacobian is introduced as a sparse
matrix. The Hessian is never computed as such but second
order derivatives are computed by finite differences when-
ever needed. We note that Matlab 6.1. does not provide
sparse structures for 3 - dimensional arrays.
The model is implemented with 2 parameters: N and L; the
values of A, B, Dy, D, are hard - coded. Note that N is a
parameter that cannot vary during the continuation. There-
fore it does not have entries in the Jacobianp. We should let
the pde_1 curve know that bruss.m is the active file, the ini-
tial values of the parameters N and L are respectively 20 and
0.06 and the active parameter is L, i.e. the second param-
eter of bruss.m. So, first of all we have to get the approx-
imate equilibrium solution which is provided in bruss.m,
using the standard ODE file convention [t,x0,options]
= bruss([1,[],’init’,20,0.06). Within ’bruss.m’ it is
called with the parameter N (’init(N)’). It sets the num-
ber of state variables to 2/V and makes an initial vector z0
of length 2N containing the values of the approximate equi-
librium solution. Now we inform the equilibrium curve that
the second parameter of bruss.m is the active parameter and
what the default values of the other parameters are. We also
set some options.

>[x1,v1] init_EP_EP(’bruss’,x0,[N L], [2]);
>opt = contset;opt=contset(opt,’MinStepsize’,
>opt=contset (opt, ’MaxCorrIters’, 10);
>opt=contset (opt, ’MaxNewtonIters’, 20);
>opt=contset (opt, ’FunTolerance’, 1e-3);
>opt=contset (opt, ’Singularities’,1);
>opt=contset (opt, ’MaxNumPoints’,350);
>opt=contset (opt, 'Locators’, [1);

1e-5);

We start the continuation process by the command
[x,v,s,h] cont (’pde_1’,x1,v1,opt).

. System

Namo systam
Coordinotes
Parameters

Titne

Derivatives Sthord

2nd ord 3rd ordb 4hord

- numerically
-from window
=gymbalically

-
X'ey-2*x+aexp(x)+b
y'-x-Z'y'n'sxpwo‘b

=] oo |

Figure 3: Example of the SelectSystemsEdit window
for the system bratu.

& &

o~

In this case the number of state variables can be a parameter
and the Jacobian can be sparse.

The routine cpl can be used to plot two or three components
of the curve. Running the command testbruss2 adds a
new curve, namely the one that branches off the first one at
L ~ 0.17. and presents it as in Figure 2, where axes labels
are added manually.

7. GRAPHICAL USER INTERFACE

An important application of CL.MATCONT is to the bi-
furcation analysis of ODEs, as we briefly touched upon in
section 5. For this case a graphical user interface version of
CL_MATCONT is available at

http://allserv.rug.ac.be/ ajdhooge/research.html.

It is called MATCONT. The present version of MATCONT
works well with Windows version 6.* of Matlab. On a Unix
platform it is recommended to use version 6.1 of Matlab
since version 6.0 is unable to load the provided examples.

A major advantage of MATCONT is the possibility to gen-
erate higher order derivatives. If the Matlab symbolic tool-
box is installed, there is an easy to use option (see Figure
3) available that computes the derivatives symbolically and
pastes the results in the odefile.

Another major advantage of MATCONT is its filing system.
MATCONT builds an archive to store all used dynamical sys-

166

tems with all data specified for their analysis as well as the
results of the analysis.

Information on computed objects and curves is stored
as mat-files by MATCONT. A curve contains coordinates of
points and additional data required to redraw and recom-
pute the curve. MATCONT creates all necessary files automat-
ically. The user can read directly from the archives where
he can study the computed results, make plots, print them
out etcetera.

8. REFERENCES

[1] E.L. Allgower and K. Georg, Numerical
Continuation Methods: An introduction,
Springer-Verlag, 1990

W.J. Beyn, A. Champneys, E. Doedel, W.
Govaerts, Yu.A. Kuznetsov, and B. Sandstede,
Numerical continuation and computation of
normal forms. In: B. Fiedler, G. Iooss, and N.
Kopell (eds.) “Handbook of Dynamical Systems :
Vol 27, Elsevier 2002, pp 149 - 219.

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve,
Yu. A. Kuznetsov, B. Sandstede and X. J. Wang,
AUT097 : Continuation and Bifurcation Software
for Ordinary Differential Equations (with
HomCont), User’s Guide, Concordia University,
Montreal, Canada 1997.
(http://indy.cs.concordia.ca).

W.J.F. Govaerts, Numerical Methods for
Bifurcations of Dynamical Equilibria, SIAM,
2000

Yu.A. Kuznetsov, Elements of Applied
Bifurcation Theory, Springer-Verlag, 1998

Yu.A. Kuznetsov and V.V. Levitin, CONTENT:
Integrated Evironment for analysis of dynamical
systems. CWI, Amsterdam 1997:
ftp://ftp.cwi.nl/pub/CONTENT

W. Mestrom, Continuation of limit cycles in
MATLAB, Master Thesis, Mathematical
Institute, Utrecht University, The Netherlands,
2002.

A. Riet, A Continuation Toolbox in MATLAB,
Master Thesis, Mathematical Institute, Utrecht
University, The Netherlands, 2000.

D. Roose et al., Aspects of continuation software,
in : Continuation and Bifurcations: Numerical
Techniques and Applications, (eds. D. Roose, B.
De Dier and A. Spence), NATO ASI series,
Series C, Vol. 313, Kluwer 1990, pp. 261-268

(2

(3]

[4]

(5]

[7}

(8]

(9]

