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STRUCTURE OF THE TALK

- Motivation

- Topics that won’t be discussed

- Analytical approaches

- Patterns close to equilibrium

- Localized structures

- Periodic patterns & Busse balloons
- Interactions

- Discussion and more ...



MOTIVATION

Reaction-diffusion equations are perhaps the most
‘simple’ PDESs that generate complex patterns

)

Reaction-diffusion equations serve as (often over-)
simplified models 1n many applications

Examples:

FitzHugh-Nagumo (FH-N) - nerve conduction
Gierer-Meinhardt (GM) - ‘morphogenesis’




EXAMPLE: Vegetation patterns

At the transition to "desertification’ in
Niger, Africa.

Interaction between
plants, soil & (ground)
water modelled by 2- or
3-component RDEs.

Some of these are
remarkably familiar ...



‘ The Klausmeier & Gray-Scott (GS) models ‘

W, = CW, —WP? +A(1—W)
P, = D,AP +WP? —BP

Wiz,y,t) < water, P(x,y,t) < plant biomass
{ U = D,AU —-UV? +A(1-10)

(Klausmeier)

(Gray — Scott)

<
|

D,AV +UV? —BV
U(x,y,t),V(x,y,t) <> concentrations

water flow on hill side «— CW,
horizontal water flow <« Dy AW or Dy AW

= Klausmeier «~ GS/GS in porous media: GKGS

[Meron, Rietkerk, Sherratt, ...]
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in the GS equat

f patterns

‘ The dynamics o
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[J. Pearson (1993), Complex patterns in a simple system]
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EXAMPLE: Gas-discharge systems

From: http://www.uni-muenster.de/Physik. AP/Purwins/...

8,”:diAu-l-f(u)—Kj,v—Kﬁ,r,W+K1—K2Jl ud Q+u(Vu)(Vu),
0

~ 2
To,v=d, Avtu—v—«, +k, 'J' vd (),
Q

@E:v‘,WdeA wH+u—w,
A PARADIGM MODEL :U: (Nishiura et al.)
U, = Use + U—-U3—e(aV +pW +7),
Vi = Ve + U=V,
oW, DWee + U-W,

In 1D: van Heijster, D, Kaper, Promislow, in 2D: van Heijster, Sandstede



Again from the work (homepage) of the Miinster group
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From Peter van Heijster, AD, Tasso Kaper, Keith Promislow

[ — pulse

fr3\ pulse

[y« front \_,V pulse

\rl t ’r/l

(. 3,7, D, ) = (6,—3,—1.,5,0.1) (0. 3,7, D.e) = (2. —1,—0.25.5,0.01)

SEMI-STRONG INTERACTIONS

1-dimensional pulses appearing from N-front dynamics.
PDE dynamics reduce to N-dim ODEs for front positions

(— attractivity of N-dim manifold + dynamics on manifold)



TOPICS THAT WON’T BE DISCUSSED:

e SCALAR EQUATIONS
U, = AU + F(U),

U(z,t): O xRt - R, QCR%

‘Tools’:

- Maximum principles

- (gradient structure

‘Waves 1n random media’ [Berestycki, Hamel, Xin, ...]



e GRADIENT FLOWS, such as

* the Cahn-Hillard equation (« interface dynamics),
U, = —A((e)AU + F(U)),
U(x,t) : QA xRT =R, QC R?. and

* the real Ginzburg-Landau equation (« defects),
(U =) AU +U - |UJPU (= 0),
Uz, t): QA x Rt - C, Q C R%

[Fife, Brezis, Nishiura, Sternberg, ...]



o INTERFACE DYNAMICS in 2D (curvature!)
* in gradient systems («~ Cahn-Hilliard)

* in singularly perturbed ‘excitable’ systems

U, = AU + F(U,V)
Vi = 0AV + «G(U,V)

UV :OxRT =R, QCR? 0<e,0 <1,
% In general

e BOUNDARY EFFECTS

[Fife, ‘Japanese school’ (Mimura, Nishiura, ...), Sandstede, Scheel, ...]



ANALYTICAL APPROACHES

Restriction/Condition: ‘We’ want explicit control
on the nature/structure of the solutions/patterns

|

e Study solutions ‘near’ simple patterns
— Modulated patterns & modulation equations.
e Study equations ‘close to’ simple equations (77)

— (Singularly) perturbed equations & near-gradient /

near-integrable systems

(nonlinear Schrodinger «~ complex Ginzburg-Landau)




e SOLUTIONS NEAR SIMPLE PATTERNS

x ‘Weakly nonlinear stability theory’

(< evolution of small patterns near a weakly unstable trivial state)
— the complex Ginzburg-Landau equation (and more).
* Modulated wave trains

(< dynamics of almost spatially periodic patterns)

— the Burgers equation, the Korteweg-de Vries equa-
tion, the Kuramoto-Sivashinsky equation, ...

* Modulated localized structures.

|[Eckhaus, Newell, Schneider, Kopell, van Harten, D, Sandstede, Scheel, ...]



o EQUATIONS NEAR SIMPLE EQUATIONS

x SINGULARLY PERTURBED RDEs
Natural assumption: (U, V) are bounded on R¢. Then,

Uy= AU+FUV) _ U, = AU +2F(U, V)
V,= S2AV +GU,V) V= AV +G(U,V)

with 0 < % = g—l < 1~ U = Uy, constant & V solves
V,=AV + G(Up, V)

a scalar equation.

Nevertheless, SP-RDEs exhibit the dynamics of systems.



PATTERNS CLOSE TO EQUILIBRIUM
EXAMPLE: 2-component systems in R',

Ut — U’L‘T F(U:' V)
Vi = DV,, + G(U,V)

A ‘trivial pattern’ (U(x,t),V (x,t)) = (Up, Vo) solves
F(Uo, Vo) = G(Uy, Vp) = 0.
Its linear stability is determined by setting
(U(z,1),V(x,1)) = (Uo, Vo) + (a, B) " E!

with & € R, (a,3) € R?. The eigenvalues A\ 3(k*) € C
can be computed explicitly as functions of k2.



Two typical pattern-generating bifurcations
Re (\) Re (M)

QNSNS

Turing: (k. #0,A.=0) Hopf (k. =0, € R)
I

Small amplitude patterns at near-criticality are described
by a modulation equation for the complex amplitude A,

where A = A(&, 7) is related to (U, V) by
(U(x,t), V(x,t)) = (Up, Vo)+eAe™ T2 (. B.)+c.c.+h.o.t.

[Note. Turing-Hopf: no reversibility (GKGS), k., A # 0]



Turing: Evolution of A is described by the rGL,
A = A& + A+ |A|2A
(Turing-)Hopf: Evolution of A is described by the ¢GL,

A; = (1 +ia)Aege + A+ (14 ib)| A A.

[proofs of validity by Schneider]

Turing: Dynamics of patterns fully understood (near-criticality).

(Turing-)Hopf: Stable periodic patterns for + — — and
1 +ab>0 (Benjamin — Feir/Newell)

Q: Dynamics small amplitude patterns it 1 4+ ab < 077



‘ cGL analysis in GKGS model

U, = UL, + CU. + AQ1-U) — UV?
I:f — {5—2 a0 I.._?I . o B I" e [; IT 2 .

With

e 07 < 1: ratio spreading speed plants:water

e nonlinear diffusion v > 1 (mostly v =1 or 2)
e A main parameter «~ yearly precipitation

o ( ~ slope, B «~ mortality plants

For given B,C a Turing (C' = 0)/Turing-Hopf (C # 0)
bifurcation takes place at Az (for decreasing A)

— A cGL analysis near A = Ar)(B,C)
[van der Stelt, D., Hek, Rademacher]



A = ({11 + iag),ﬁlgg —+ (‘51 + ibg).f’i - (Ll + iLg)‘AFA
— L, LI(B C) & L,(B, C)<O «— + — — (patterns)

3 6| )
a1 b'l

B-F/N also OK always stable patterns at onset ("7)
Note C=0: Ay = 2v2Age +b1(7)A+ Li(7)|A]PA with

bi(y) = [—39+27V2+ (41 — 29v2)4] (%) = %

Li(y) = —52-v2)[183+2v2) + 1202+ V2)y+ (-8 + 3\/5),}_,2] (2



Q: NEAR-CRITICAL PATTERN FORMATION IN R??77?

Re(A)>0

(spatlal symm. )

o

I /RB(A)>0

7N

A

k

CANNOT BE COVERED BY A 2-D c¢GL,

At = DMA& + DlZAgn + DQQA;??? + A

NOTE: Even the GL-extension
of the system of coupled
amplitude equations for
hexagonal patterns only

covers a small part ot the

ring of unstable ‘modes’.

(1 + ib)| A%




LOCALIZED STRUCTURES

Far-from-equilibrium patterns that are "close’ to a
trivial state, except for a small spatial region.
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A (simple) pulse in GS A 2-pulse or 4-front in a 3-component model



Pulses/fronts correspond to homo-/hetero-clinic orbits.

Prototypical example (that drove the development of
‘geometric singular perturbation theory’ [Fenichel,Jones, ...)):

FitzHugh-Nagumo

0

Construct 1-pulse, or
2-front homoclinic orbit -
in a 3-D singularly

perturbed system _H,_,J

slow
fast

|
_——q_x“\\:j -




fast

00 A s A Y

v, W
u,p s

Yhom(§) C W*(P) N W*(P) | R

(= 3-D N 3-D in 6-D space) | NN




SPECTRAL STABILITY
EXAMPLE: 2-component system on R!.
(U(z,1),V(z,t)) = (Unom (), Vhom(x)) + (u(x)jv(a:))e)‘t

(1) (2)

Introduce ®(x) = (u, u,, v,v,), then
¢, = A(z; \)P,
with A a 4 x 4 matrix with Tr A = 0, and
lim A(z;\) = Ax(N)

Tr—1T00



Let {®1(x; \), Po(z; A), P3(x; N), Py(z; A)} be 4 indepen-
dent solutions so that

lim @1}2((1’; /\) — Oj lim (1)3}4(2’); )\) =0

Tr——0Q Tr——+00

(this is possible for A € o.). The Evans function asso-
ciated to this stability problem is defined by

D(A) = det [Py (x; X)), Po(x; N), Pg(x; A), Py(z; N)]

e D does not depend on x
e D is analytic as function of A\ for A € e
e D=0 << \is an eigenvalue

[Evans, Alexander, Gardner, Jones, Pego, Weinstein)]



If the system is singularly perturbed, D(\) can be
decomposed,

D()\) — Dfast (A)DSIG‘W (A)

® Dyt (A) is analytic for A\ € Oegs;

® Dyow(A) is meromorphic.

e the zeroes of Dy, (\) are given by a scalar problem and
can be determined; some of these correspond to poles of
DSIOW()\)

e the zeroes of Dy (A) can be determined by a Melnikov-
like approach

[D,Gardner,Kaper, ..,Veerman|



What about localized 2-D patterns?

LIRER YA Y

Spots, stripes, ‘volcanoes’, ...., most (all?) existence and
stability analysis done for (or ‘close to’) ‘symmetric’ patterns

(Again) PDE ~» ODE-analysis

Note, however: polar/spherical symmetries,
\ 0> N-—-10
o2 ro or’

an inhomogeneous term with singularity at » = 0.
[Ward,Wei1,Winter, van Heijster & Sandstede, ....]

A




‘Volcanoes’ and ‘Rings’ 1n Klausmeier/Gray-Scott ‘

Laboratory experiment

[Pearson, Swinney et al.

[Morgan & Kaper, 2004 ]



PERIODIC PATTERNS & BUSSE BALLOONS

A natural connection between periodic patterns near
criticality and far-from-equilibrium patterns

/-

60 :

| Cross-toll
-instability

=)
T

— | Region 1n (k,R)-space
i |1in which STABLE
periodic patterns exist

bifurcation parameter R

Zig-zag R,
instability
1-0 i— I 1 1 1 1

2:0 25 30 35 40 4-5 50

[Busse, 1978] (convection)

wave number k



A Busse balloon for the GS model

[D, Rademacher & van der Stelt, *12]
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Periodic patterns near £=0: singular localized pulses
(of vegetation pattern kind)
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‘ Coexisting stable patterns (for the same parameter values) ‘




What do we know analytically?

* Near onset/the Turing bifurcation: ‘full analytical
control’ through Ginzburg-Landau theory.

* A complete classification of the generic character of
the boundary of the Busse balloon [Rademacher & Scheel, *07].

* Near the ‘fall of patterns’: existence and stability of

singular patterns [D, Gardner & Kaper, *01; van der Ploeg & D, *05;
D, Rademacher & van der Stelt *12].

No further general 1nsight in (the boundary of)
the Busse balloon.




‘ A spin-off: the Hopf dance, a novel fine-structure

ey

7 sideband
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‘ A ‘dance’ of intertwining Hopf bifurcations. ‘

‘ The homoclinic (k=0) ‘oasis’ pattern 1s the last to destabilize ‘

(N1’s conjecture)



Two types of Hopf bifurcations?

FAVANANAWS .

out of phase

Why only these two?




Spectral analysis

STABILITY: ‘Solution’ = ‘Pattern’ + ‘Perturbation’

e LINEARIZATION: ‘Perturbation’ = P(x)e?, X € C.
o INSTABILITY: There is a A s.t. Re(\) > 0.
o FACT: A ={Ai(s),se[-1,1],i=1,2,..., N/oo}.

AZ(S)

% Aj(S)

Re

) @)

Note: &1 endpoints correspond to Hy; Hopt bifurcations.



The long wavelength limit ( £ ~ 0) ‘

e The critical spectral branch Ay(s) ‘unrolls’.

e The ‘oasis’ state is the last pattern to destabilize.

e \y(s) shrinks and ROTATES as k — 0. Tm(\)
Im(\) \
+1.7j§\ ~ 1/k
/ - /1
J -1 *
\
Re(A) Ah(S)

By: Evans function for periodic patterns [Gardner, Zumbrun, D & van der Ploeg]



A novel general insight in the ‘fall of patterns’

[D, Rademacher & van der Stelt, *12]
In a general class —well, ... — H_,

of reaction-diffusion models: |}

* The homoclinic ‘oasis’
pattern 1s the last pattern to
become unstable («»>N1’s
conjecture).

» The Hopf dance: near the
destabilization of the
homoclinic pattern, the Busse /

balloon has a ‘fine structure’ [ 1
of two intertwining curves of
Hopf bifurcations.




THE BELLY DANCE

The spectral branch 1s only to leading order a straight
line/an interval.

In general 1t will be Im
(slightly) bent. K
This may yield small -

regions of ‘internal Hopf
destabilizations’ and the

corners 1n the boundary of -]
the BB will disappear <
the orientation of the belly.




A more typical Busse balloon?

Fold
k ? —1

+1 —

Busse balloon

Or more generic (?): sometimes a co-dimension 2
intersection, sometimes an ‘internal Hopf bridge’?




This 1s however not the case. In the class of considered
model systems, a BELLY DANCE takes place.

The belly always points away from the /m-axis near
the ‘corner’ at which +1 and -1 cross at the same time.

- Im Im Im

R@ RE‘ RG

Im Im Im

Re Re Re



WHY??

The theory includes 1n essence “all explicit models 1n
the literature’

(<> Gray-Scott/Klausmeier, Gierer-Meinhard,
Schnakenberg, gas-discharge, ....)

HOWEVER, if one looks carefully it’s clear these
models are 1n fact very special.

All these prototypical systems exhibit patterns that are
only ‘locally nonlinear’ (?!)




WHAT?

( Ut — UZCCB - MU T V2
GM :
( ) <\ % _ EQVCI;:E — 'V ‘(/]

(U, = Un + A1-U) — UV?
G5 Vv = 2, - By UV?

These equations share special non-generic features.

V (fast)

— (Consider the ‘slow’
and ‘fast’ reduced limits.

GS OO




THE MOST GENERAL MODEL:

e Reaction-diffusion equation.

e Two-components, U(x,t) & V(z,1).

e On the unbounded domain: = € R'.

e A stable background state (U, V) = (0, 0).

e Singularly perturbed: U(z,t) ‘slow’, V(x,t) ‘fast’.

Ut — UJTCE T ,uHU T ,u12V T F(U,V;6)
Vi = eV + po1U 4 poaV 4+ G(U,V;e)

* with i1 + peo < 0 and pq1pi90 — p1ope1 > 0.
+ some technical conditions on F(U,V) and G(U,V).



V

Gs

The slow fields:

(GS) Ui
GENERAL U, = U,, + ,L611U—|—F(U, 0; O)

GM/GS: LINEAR, F(U,0;0) = 0!

||
3
o
|
=

Crucial for stability analysis & for Hopf/belly dance



Consider existence and stability of pulses 1in generic
singularly perturbed systems (1.e. systems that are also
nonlinear outside the localized fast pulses)

— Significant extension Evans function approach
(<> Frits Veerman)

| A Gierer-
| |\ | Meinhardt
N‘ ..... I || equation
: |

? . s : I. '. ! :' | .I] ) |r| | A |.| |
| l 2.65¢ | I; I'f' -f' | II ,I II . | | | III ,I I ‘ | II| 4
: | (] ,I In I' . 'l,II'I |‘ ‘ | :Iull'l | | )]
l ( il T ' | | (
261 | I [
| [ | | |
% [ .‘ .| | | (1)1 UL
5255_" [ “, H | || |‘|I .l"u ' || || | {] || 1
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| ‘l’ AN ll\ I \ n ',‘ [ .|| [ ] slow
251 i ' J | I [ | |
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25} J | I h' ‘,- IV 1] I 1 "1 non-

linearity’
A chaotically oscillating standing pulse??
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‘ Busse balloons in the GKGS model ‘

{

12

10 |

A(1 —U)

Uv?,

2

U, Ul + CU, -

V, = 027V, BV -
_ B=C=0
y. 1 . 12

Busse balloon

___sideband

|
1.2

A

1 |
0.8 1 1.4
0

0.2

04 06

‘ REMARKABLY SIMILAR!

[van der Stelt, D., Hek, Rademacher]



Some spectral plots near the cusp | | f*ide\b&ﬂd

. :
crossing point

16

14

Many, many
open questions
about structure
& nature of
Busse balloons
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What about (almost) periodic 2-D patterns?

DEFECT PATTERNS
0

Slow modulations of
(parallel) stripe patterns
+ localized defects

0

Phase-diffusion equations with defects as singularities

A defect pattern in a convection experiment

[Cross, Newell, Ercolani, ....]



INTERACTIONS (OF LOCALIZED PATTERNS)

‘ A hierarchy of problems

« Existence of stationary (or uniformly traveling) solutions
» The stability of the localized patterns

 The INTERACTIONS

Note: It’s no longer possible to reduce the PDE to an ODE



WEAK INTERACTIONS

o\ \
c_(i) > TE
A N
e — T(¢) —% ‘

General theory for exponentially small tail-tail interactions

[E1, Promislow, Sandstede]

%F = C1e % at leading order, for I' large enough
Essential: components can be treated as ‘particles’

- - 1 - 1

U(:L‘?i) — U}-!,,(JJ + §F) + Uh(fl? — §P)

is solution of the PDE up to exponentially small terms



SEMI-STRONG INTERACTIONS

1.5 T

* Pulses evolve and
change 1n magnitude
and shape. v

» Only O(1) '
interactions through >
one component, the
other components 05 v
have negligible

Interactions N

0 10 20 30 40 50 60 70 80 90 100
X

U

‘Gap’ in decay rates < PDE is singularly perturbed



Pulses are no ‘particles’ and may ‘push’ each
other through a "bifurcation’.

Semi-strong dynamics in two (different) modified GM models

uv

10

L k

0
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20 30 40 50 60 70 80
X

finite-time blow-up
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a symmetry breaking bifurcation
[D. & Kaper 03]



Example: Pulse-interactions in (regularized) GM

Existence and Stability

Theorem. [Doclman, Gardner, Kaper]
Let € be small enough.
0F0r0<u<<£l4thereisa
Y homoclinic pulse solution

(Un(z), Va(z)) = @n(2).

/ k e For 1t > ppope the pulse is
A\ - «spectrally stable.




The construction of the 2-pulse $p(x)

e 2 different ODE
reductions with
(unknown) speeds
+c: one at each
‘fast’ V-pulse;

e outside ‘fast’

regions c 18
negligible O(e)
effect: solve the
‘slow’” U-eqs.

e distance between pulses = 2I'(t) = 2 ftu s)ds =
‘time-of-flight” P, — P, = F'(¢) = F( -I(t))
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{[}l.: o) .' :I

0 10 20 30 40 50 60 70 80 90 100
X

IntrinSically formal result [Doelman, Kaper, Ward]

Note: I' > 1/e* — the weak interaction limit:

%F — %82 Me_QEEF\/ﬁ and A(F) — \éﬁj constant

(2 “copies’ of the stationary pulses)



Stability of the 2-pulse solution:
QQ: What 1s ‘linearized stability’?
A: ‘Freeze’ solution and determine ‘quasi-steady eigenvalues’

Note: ‘not unrealistic’, since 2-pulse evolves slowly

Tw ()
T'wo pairs of eigenvalues
o Htn ‘travel’ through C as
i function of the distance I'
oo between the pulses, and

D a++r—— Re(A approach the eigenvalues

of the stationary 1-pulse
¥ solutions as I' — o0.




The Evans function approach can be used to explicitly
determine the paths of the eigenvalues

-1 -0.75 -0.5 l\

for I'(¢) < I'

Note: I = :QL% for p > py > M Hopf



Nonlinear Asymptotic Stability & Validity

Theorem [Doelman, Kaper, Promislow]
Define W (z,t) by

(U(:B,t).}, V(gjat)) — (I)F(t)(x) + W(:Uat)'

Let € > 0 be sufficiently small, © > ppops, and assume
that (Up(z), Vo(x)) is sufficiently close to ®p)(x) with
['(0) > I'*. Then there exist M, v > 0 such that

W lx < M(e " ||Wollx +&°)
with ||[W]|x = e||[Whllz2 + 2[|0: WA 22 + [|Wa||

Proof: Renormalization Group Method



THE 3-COMPONENT (gas-discharge) MODEL

Uy = Ue + U-U>—c(aV +BW +7),
Ve = Ve + U=V,
oW, = LW, + U-W,

1.5

1F —

051

0,

05 r

4 F

_‘I .5 1 1 1 C
-1000 -500 0 500 1000

[Peter van Heijster, AD, Tasso Kaper, Keith Promislow ’08,’09,’10]



Simple and explicit results on existence and stability

Theorem

Our system possesses a standing pulse if there exists an A € (0,1)
which solves

aA? + ,SA% = .

Moreover, if |a«D| > |3| and sgn(«) # sgn(/3), then there is a
saddle-node bifurcation of homoclinic orbits at v = ~sy.

Theorem

The standing pulse with O(1)-parameters is stable if and only if

aA? + gA% > 0.



Sub- and supercritical bifurcations into traveling pulses

7= 0(1/e?) = 7 /&%, speed = O(&?) = e%c

| ]
6v2 - - - 62 -
8 F 8
6 :L 6
4 4
\ 7/\_* ’f-*
2 j 2 o
e - T 0 . =

Bifurcation diagrams for two typical parameter combinations

There is an explicit analytical expression for 7*, etc
( p y p ,



Interaction between Hopf and bifurcation into traveling pulse

T = 0(1/&?)

Simulations for two typical parameter combinations



Front interactions: similar validity/reduction results

fi(t) _ (_1)'&.+1%_\@€ [,} 1+ (_GE(T1—F1) 4+ (_1)-;:'—165(1“1-_1—&-)
+(=1)fesimlrn) (=) N tesTimtv)) 4 B (—ep(F1=T)
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The formation of a 5-front traveling wave
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DISCUSSION AND MORE ....

There 1s a well-developed theory for ‘simple’
patterns (localized, spatially periodic, radially
symmetric, ...) 1n ‘simple’ equations.

In 1 spatial dimension ‘quite some’ analytical
insight can be obtained, but more complex
dynamics are still beyond our grasp ...

Challenges:
- Defects 1n 2-dimensional stripe patterns

- Strong pulse interactions (1 D!)



The GS equation perhaps 1s one of the most well-studied
reaction-diffusion equations of the last decades.

Laboratory experiment

It’s mostly
famous’ for
exhibiting
‘self-
replication
dynamics’




Strong interactions ...

e = =

i 7Y
2500 \/\ N/
i w\//\\ A
- u&\
. . . . 20 . . . . 40 . . 60 . . . . 80 . . . . 100

L , TP
The pulse self-replication mechanism (simulations in GS)

A generic phenomenon, originally discovered by Pearson et
al 1n ’93 1n GS. Studied extensively, but still not understood.

[Pearson, Doelman, Kaper, Nishiura, Muratov,Ward, ....]



And there 1s more, much more ...
800

time

[Ohta, in GS & other systems]

0

0 1600
A structurally stable Sierpinsky gasket ...






Various
kinds of
Spot-,
front-,
stripe-
Interactio
ns in 2D

. I 20. 20.
2(). Q(Jn 20D
I }. O ] :

20 2( 2(
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t = 3000 20 0 t = 4900 20

20

[van
Heijster,
Sandstede]
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