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Cells can detect chemical and mechanical information

by signal specific receptors on the cell surface.

Cells signal to interact with their environment

and with neighboring cells, for instance by

- diffusive signals

- spatially localised signals, e.g. bound

to the extra cellular matrix (ECM)

- cell surface bound signals
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The reaction of cells to external signals often result in

macroscopic structure formation on the population level.

The understanding of pattern formation

in wildtype populations and mutant populations

can thus reveal basic underlying principles

of cellular signaling, motion, and growth.
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1 Turing Pattern,
Diffusion Driven Instabilities

- two or more chemicals,

- with different rates of diffusion

- chemical interaction of activator-inhibitor type

It is suggested that a system of chemical substances, called

morphogens, reacting together and diffusing through a tissue,

is adequate to account for the main phenomena of morphogenesis.

A. M. Turing (1952): The chemical basis for morphogenesis.

Phil. Trans. Roy. Soc. Lond., 237, 37–72.
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[Edelstein-Keshet: book]

Consider two morphogens C1, C2

∂tC1 = D1∆C1 + R1(C1, C2)

∂tC2 = D2∆C2 + R2(C1, C2)

For constant steady states C̄1, C̄2 we have

R1(C̄1, C̄2) = 0 = R2(C̄1, C̄2).

To study the effects of small inhomogeneous perturbations

Ĉ1(t, x), Ĉ2(t, x) of these constant states let

Ĉ1(t, x) = C1(t, x) − C̄1 and Ĉ2(t, x) = C2(t, x) − C̄2
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Linearizing around C̄1, C̄2 we obtain

∂tĈ1 = D1∂xxĈ1 + a11Ĉ1 + a12Ĉ2

∂tĈ2 = D2∂xxĈ2 + a21Ĉ1 + a22Ĉ2

where

aij =
∂Ri

Cj

(C̄1, C̄2) .

Calculate the characteristic equation with the ansatz

Ĉ1(t, x) = α1 cos(qx) exp(σt) , Ĉ2(t, x) = α2 cos(qx) exp(σt)
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Then

α1σ = −D1q
2α1 + a11α1 + a12α2

α2σ = −D2q
2α2 + a21α1 + a22α2

which is linear w.r.t. α1, α2. Non-zero solutions only exist,

if detM = 0 where

M11 = σ + D1q
2 − a11 , M12 = −a12

M21 = −a21 , M22 = σ + D2q
2 − a22

i.e.

σ2 + σ(−a22 + D2q
2 − a11 + D1q

2)

+[(a11 − D1q
2)(a22 − D2q

2) − a12a21] = 0
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For D1 = D2 = 0 we have

σ1,2 =
a11 + a22

2
±

√

(a11 + a22)2

4
− (a11a22 − a12a21)

The system is stable, Re(σ) < 0, when

a11 + a22 < 0

a11a22 − a12a21 > 0
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Consider the analogous conditions for D1, D2 6= 0,

to see how diffusion can destabilise the system

a11 + a22 − D2q
2 − D1q

2 < 0

(a11 − D1q
2)(a22 − D2q

2) − a12a21 > 0

The violation of any of these inequalities

leads to diffusion driven instabilities.

Since D1, D2 > 0, only the second inequality can be violated.

For z = q2 its left hand side can be written as

H(z) = D1D2z
2 − (D1a22 + D2a11)z + (a11a22 − a12a21)

where H(z) is a parabola with minimum in

zmin =
1

2

(

a22

D2
+

a11

D1

)

Turing Pattern and other Pattern Forming Mechanisms in Developmental Systems 8



'

&

$

%

A minimal condition for H(z) to have negative values is

H(zmin) < 0 or

a11D1 + a22D2 > 2
√

D1D2
√

a11a22 − a12a21 > 0 (1)

For wavenumbers close to qmin the rate of growth

of the perturbations is positive.

Thus suitable conditions

for diffusion driven instabilities are:

the stability conditions for the ordinary differential equations

and (1).
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Interpretation

Due to condition a11 + a22 < 0 at least

one of the two coefficients has to be negative.

Let a22 < 0, i.e. ∂R2/∂C2 < 0.

Thus C2 inhibits its own rate formation.

Due to condition a11D2 + a22D1 > 0 we obtain

that a11 > 0, i.e. ∂R1/∂C1 > 0.

Thus the C1 activates its own formation.
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Therefore a11a22 < 0.

Thus condition a11a22 − a12a21 > 0

can only be met, if a12a21 < 0.

We also have a11 + a22D1/D2 < 0. Thus D1 6= D2,

since otherwise a11 + a22 · 1 < 0.

So the diffusion coefficients of the two chemicals

must be dissimilar for a diffusive instability to occur.

Further, one can show, that the range of inhibition

is larger than the range of activation and that D2 > D1.
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So due to a random perturbation of the constant steady states

a small peak concentration of the activator is created

at some location.

This causes an enhanced production of the inhibitor.

Since the inhibitor diffuses away more rapidly than the activator,

it cannot control the local activator production

and the initial peak will grow.

The region near this peak contains sufficient levels of inhibition

to prevent further peaks of activation close by.
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See

http://www.ncbi.nlm.nih.gov/projects/genome/guide/img/

dictyEM.jpg

Selforganization of Dictyostelium discoideum, (Dd)
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Chemotactic Aggregation

∂tu = −∂x(−µ∂xu + χu∂xv)

∂tv = −∂x(−D∂xv) + fu − kv

Steady state analysis results in fū = kv̄.
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Destabilization and Onset of Aggregation

Equations for small perturbations û, v̂:

∂tû = µ∂xxû − χ (∂xû∂xv̂ + ū∂xxv̂ + û∂xxv̂)

∂tv̂ = D∂xxv̂ + fû − kv̂

Delete quadratic terms w.r.t. the perturbations

∂tû = µ∂xxû − χū∂xxv̂

∂tv̂ = D∂xxv̂ + fû − kv̂
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Ansatz:

û(t, x) = A exp(σt) cos(qx)

v̂(t, x) = C exp(σt) cos(qx)

We obtain Re(σ) > 0 if

µ(Dq2 + k) < χūf
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2 Orientational Selection and Aggregation
in Structured Population Models

See http://cmgm.stanford.edu/devbio/kaiserlab

About Myxococci ...

Selforganization and rippling in populations of myxobacteria.
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[Lutscher - S.]
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Signaling upon Contact

Countermigrating traveling waves in myxobacteria

A simple model with symmetry

∂tu + ∂xu = −F (u, v)u + F (v, u)v

∂tv − ∂xv = F (u, v)u − F (v, u)v

The turning rates are assumed to be general and depend on both,

the left and right moving part of the population.

In this case linearization does not show patterns.

[Primi - S. - Velázquez ]

Without the above given symmetry, 3 equations of this type

are sufficient to obtain patterns with a defined wavelength.
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Systems with symmetry

∂tu1 + ∂xu1 = −T1(u1, u2, v1, v2) + T2(v1, v2, u1, u2)

∂tu2 = T1(u1, u2, v1, v2) − T2(u1, u2, v1, v2)

∂tv1 − ∂xv1 = T2(u1, u2, v1, v2) − T1(v1, v2, u1, u2)

∂tv2 = T1(v1, v2, u1, u2) − T2(v1, v2, u1, u2)

Example with a defined wavelength:

T1 = F1(u1 + u2 + v1 + v2, u1, v1, v2)

T2 = F2(u1 + u2 + v1 + v2, u2)

u1 can become u2 in dependence of the total population,

its own kind and the countermigrating part of the population.

u2 can turn its direction, in dependence of the total population.
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If u2, v2 move, but with a different speed than u1, v1,

then inhibiting effects are needed

in order to obtain a defined wavelength.

For the given situation inhibition is not a reasonable mechanism.

Orientational Selection and Aggregation in Structured Population Models 21
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3 Test Experiment for the Model

Mix wildtype with mutants, which do not produce

the surface bound C-signal.

Upon contact of a wildtype with a countermigrating mutant,

the wildtype does not change direction, whereas the mutant does.

→ The more mutants, the larger the wavelength.

Too many mutants make the pattern disappear.

u1 → u2 → u3 → v1 → v2 → v3, all move with the same speed.

λ = u1 + u2 + u3 + v1 + v2 + v3 + ū1 + ū2 + ū3 + v̄1 + v̄2 + v̄3 ,

where ūj , v̄j describe the respective mutant populations.

T1 = F1(λ, u1) , T2 = u2F2(v1 + v2 + v3) , T3 = f3u3

T̄1 = F1(λ, ū1) , T̄2 = ū2F2(v1 + v2 + v3) , T̄3 = f3ū3
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T1 = F1(λ, u1) , T2 = u2F2(v1 + v2 + v3) , T3 = f3u3

T̄1 = F1(λ, ū1) , T̄2 = ū2F2(v1 + v2 + v3) , T̄3 = f3ū3

Interpretation:

u1 needs a minimal total population density to start C-signaling,

i.e. to become excited and able to turn.

The excited bacteria u2 receive the C-signal

upon contact with countermigrating wildtype cells.

u3 turns with a certain probability.

The mutants ū2 need contact with the countermigrating

wildtypes v1, v2, v3 in order to be able to turn.
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Alignment:

∂tf(t, γ) = −
∫

I
T [f ](γ, γ′)f(t, γ)dγ′

+
∫

I
T [f ](γ′, γ)f(t, γ′)dγ′

where T [f ](γ, γ′) =
∫

I
Gσ(γ′ − γ − V (w − γ))f(t, w)dw,

I = [− 1
2 , 1

2 ], V is the orientational angle,

an odd function and 1-periodic,

Gσ measures the accuracy of reorientation

and can be chosen as the standard periodic Gaussian.
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Bi-Directional Alignment - Attraction and Repulsion:

If the angle between myxobacteria is small, they attract each other.

If the angle between myxobacteria is larger, they are repulsive,

respectively they are attracted to the ends of their interaction

partners.

Peak Solutions for the Limiting Equation:

Consider Gσ with σ = 0, the Dirac mass δ0,

which describes deterministic turning.

Convergence of solutions of our equation for Gσ to solutions for δ0,

for σ small enough, was proved by E. Geigant.
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[Kang - Perthame - S. - Velázquez]

For continuously varying initial distributions

an exchange of mass and generalized momenta takes place.

Define suitable partial masses m1(t), m2(t) as well as

suitable means of partial first moments ξ1(t), ξ2(t).

By showing that suitable generalized second moments are decreasing

in time it could be proved, that two oriented peaks develop

at two exactly opposite orientations ξ̃1, ξ̃2,

if initially two slightly asymmetric oriented peaks are present.

Their final masses m̃1, m̃2 can be different.

These initial peaks may differ in size but should both be of higher

order of magnitude in size than the rest of the initial distribution.

So we obtained local stability

for alignment into two opposite directions,

but NO selection of mass.
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[Primi - S. - Velázquez]

Have a closer look at the case σ > 0.

If the orientational angle V is very small

the kinetic equation can be approximated by

∂tf = σ2m
2 ∂xxf + ∂x

(

f(x)
∫

I
V (x − y)f(y)dy

)

We are interested in the steady states.

An equivalent formulation for these is

σ2

2 ∂xf(x) + f(x)
∫

I
V (x − y)f(y)dy = 0

∫

I
f(x)dx = 1 and f(x + 1) = f(x)

Orientational Selection and Aggregation in Structured Population Models 27



'

&

$

%

Heuristics for the Selection Mechanism

Let σ = 0, then the equation reduces to

f(x)
∫

I
V (x − y)f(y)dy = 0

Any function of the form f(x) = αδ0(x) + βδ0(x − 1
2 )

is a solution, for arbitrary choice of α, β.

For σ > 0 this is not the case.
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Suppose fσ → αδ0(x) + βδ 1

2

(x) for σ → 0.

For σ << 1, fσ can then be approximated by the solution of

σ2

2 ∂xf(x) + f(x)Vα,β(x) = 0
∫

I
f(x)dx = 1

where Vα,β = αV (x) + βV (x − 1
2).

This equation can be solved explicitly

f(x) =
exp(− 2

σ2
[αφ(x)+βφ(x− 1

2
)])

R

I
exp(− 2

σ2
[αφ(y)+βφ(y− 1

2
)])dy

with φ(x) =
∫ x

0
V (z)dz, so φ(x) = φ(−x).
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Assume φ( 1
2 ) 6= 0, which is generally the case.

The condition for having two peaks concentrated at x = 0 and x = 1
2

is that αφ(x) + βφ(x − 1
2) reaches its minimum at these points.

In particular αφ(0) + βφ(− 1
2) = αφ( 1

2 ) + βφ(0).

This can only happen for α = β = 1
2 .

What are the conditions on V for either one

or two peaks of equal size to occur?

Suppose for σ << 1 exists a peak-like smooth function f ,

mainly concentrated at 0, which solves

σ2

2 ∂xf(x) + f(x)
∫

I
V (x − y)f(y)dy = 0

∫

I
f(x)dx = 1

and converges to δ0 for σ → 0.
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This function may be approximated by the solution of

σ2

2 ∂xf(x) + f(x)V (x) = 0 ,
∫

I
f(x)dx = 1 .

Therefore

f(x) =
exp(− 2

σ2
[
R

x

0
V (z)dz])

R

I
exp(− 2

σ2
[
R

y

0
V (z)dz])dy

For
∫ 1

2

0
V (x)dx > 0 we have a main concentration around 0.

For
∫ 1

2

0
V (x)dx < 0 the peak is located at ± 1

2 ,

which is a contradiction.
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