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Assumptions

We consider partial differential equations of the form

U, = A@,)U+N({U), zeR, Uex. (1)

Travelling waves are solutions of (1) of the form

Uz, t) = Q(z—ct) (2)
We introduce coordinate

E=x—ct




Hypothesis The matriz-valued function A(&;A) € C**™ is of the form

A(& ) = A(€) + AB(9)

where A(-) and B(-) are in C>=(R,R"*").

(3)
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Dichotomies

We consider the eigenvalue )\ dependend linearized system of (1)

d
d—gu = A(&; Nu (4)

with evolutionary operator ® with the properties:

P&, () = (£, G A)
®(£, ) =id, (&, 7)®(7,¢) = ®(¢,¢) forall §,7,( R (D)
u(€) = ®(€. C)uo satisfies (4) for every ug € C"

Py



Definition 1  (Exponential dichotomies) Let I = R™, R™ or R, and fir \. € C. We say that (4)
with A = A, fired. has an exponential dichotomy on I if constants K > 0 and x* < 0 < k" erist as well as a
family of projections P(£), defined and continuous for & € I, such that the following is true for £, € I.

o With ®5(&,() := ®(&,()P(C), we have

|®5(8,¢)| < Ke® &9, ¢g>¢,  éCel
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Definition 1 (Exponential dichotomies) Let I = R™, R~ or R, and fir A\. € C. We say that (4) ;
with A = A, fired. has an exponential dichotomy on I if constants K > 0 and x* < 0 < k" erist as well as a
family of projections P(£), defined and continuous for &€ € I, such that the following is true for £,( € 1.

o With &*(£,¢) := B(&,{)P(C), we have

|9%(¢,¢)| < Ke®™ &%), ¢>¢,  §Cel
o Define 8%(¢,() i= ®(&,{)(id—P(()), then

e DI<kFED,  £<d  Eled
e The projections commute with the evolution, ®(&,()P(() = P(§)®(&,(), so that

(€, QJuo € R(P(£)), £2¢  &Cel
®"(&, Quo € N(P()), =6 LGlel

The &-independent dimension of N(P(&)) is referred to as the Morse index of the exponential dichotomy on I.

If (4) has exponential dichotomies on R and on ™, the associated Morse indices are denoted by i, (\.)
and i_(A,), respectively.




Theorem 1  Firstly, let I be RT or R™. Suppose that A(-) € C*(I,C"*") and that the equation

d
A’ = A(&)u (6)

has an exponential dichotomy on I with constants K, k° and k" as in Definition 1. There are then positive

constants 0, and C' such that the following is true.
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Theorem 1  Firstly, let I be RT or R™. Suppose that A(-) € C*(I,C"*") and that the equation

d

—u = A(&)u 6

U= A© ©
has an exponential dichotomy on I with constants K, k° and k" as in Definition 1. There are then positive
constants 8, and C such that the following is true. If B(-) € C°(I,C™*™) such that sup,.; s>, |B(§)| < 8/C

for some & < o, and some L > 0, then a constant K > 0 ezists such that the equation

d

—u=(A@€) + B©) (7)
§

has an exponential dichotomy on I with constants K , K°+ 0 and k" — §. Moreover, the projections P(£)

and evolutions ®5(£,() and (£, () associated with (7) are §-close to those associated with (6) for all

£, ¢ €1 with [£],|C| = L. Secondly, if I =R, then the above statement is true with L = 0.




Remark 1  If the perturbation B(§) in (7)

converges to zero as |£| — oo with & € I, then the projections
and evolutions of (7) converge to those of (6).

It is also true that, if (4) has an exponential dichotomy for A = A., then the evolutions and projections that
appear in Definition 1

can be chosen to depend analytically on A for A close to A,




Remark 1  If the perturbation B(§) in (7)

converges to zero as |£| — oo with & € I, then the projections
and evolutions of (7) converge to those of (6).

It is also true that, if (4) has an exponential dichotomy for A = A., then the evolutions and projections that
appear in Definition 1  can be chosen to depend analytically on A for A close to A,

We may wish to replace the condition xk° < 0 < k" that appears in Definition 1 by the weaker
condition k* < k". Using a transformation for an appropriate 1, we see that all the results

mentioned above are also true under this weaker condition, i.e. for arbitrary spectral gaps.
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Spectra and Fredholm Properties

We consider the family of operators
TLA) = D —H, U — L Al A)u (8)

with parameter ) .

Recall that an operator £ : A — ) 1s said to be a Fredholm operator if
R(L) 1s closed in ), and the dimension of N(£) and the codimension of

R(L) are both finite.
The difference dim N(£) — codim R(L) is called the Fredholm index of L.




Definition 2  (Spectrum) We say that A is in the spectrum £ of T if T(\) is not invertible, i.e. if the
inverse operator does not exist or is not bounded. We say that A € X is in the point spectrum X of T
or, alternatively, that A € ¥ is an eigenvalue of T if T(\) is a Fredholm operator with index zero. The
complement £\ Xt =: Yo 15 called the essential spectrum. The complement of X in C is the resolvent set

of T.




Definition 2  (Spectrum) We say that A is in the spectrum £ of T if T(\) is not invertible, i.e. if the
inverse operator does not exist or is not bounded. We say that A € X is in the point spectrum X of T
or, alternatively, that A\ € ¥ is an eigenvalue of T if T(\) is a Fredholm operator with index zero. The
complement ¥\ ¥y =: Yo s called the essential spectrum. The complement of X in C is the resolvent set

of T.

Remark 2  The point spectrum is often defined as the set of all isolated eigenvalues with finite multiplicity,
i.e. as the set ipt of those A for which T (A) is Fredholm with index zero, the null space of T (A) is non-trivial,
and T () is invertible for all X in a small neighbourhood of A (except, of course, for A = \).




Theorem 2 Fiz A € C. The following statements are true.

e ) is in the resolvent set of T if, and only if, (4) has an ezponential dichotomy on R.




Theorem 2 Fiz A € C. The following statements are true.

e ) is in the resolvent set of T if, and only if, (4) has an ezponential dichotomy on R.

o \ is in the point spectrum Xy of T if, and only if, (4) has exponential dichotomies on R™ and on R~
with the same Morse indez, i (\) = i_(A), and dim N(7(A)) > 0. In this case, denote by Py (&; \) the
projections of the exponential dichotomies of (4) on RT, then the spaces N(P_(0; X)) NR(P.(0; \)) and

N(T (X)) are isomorphic via u(0) — uf(-).




Theorem 2 Fiz A € C. The following statements are true.

e ) is in the resolvent set of T if, and only if, (4) has an ezponential dichotomy on R.

o \ is in the point spectrum Xy of T if, and only if, (4) has exponential dichotomies on R™ and on R~
with the same Morse indez, i (\) = i_(A), and dim N(7(A)) > 0. In this case, denote by Py (&; \) the
projections of the exponential dichotomies of (4) on RT, then the spaces N(P_(0; X)) NR(P.(0; \)) and
N(T (X)) are isomorphic via u(0) — uf(-).

o )\ is in the essential spectrum Y. if (4) either does not have exponential dichotomies on R™ or on R,
or else if it does, but the Morse indices on R and on R~ differ.




Theorem 2 Fiz A € C. The following statements are true.

e ) is in the resolvent set of T if, and only if, (4) has an ezponential dichotomy on R.

o \ is in the point spectrum Xy of T if, and only if, (4) has exponential dichotomies on R™ and on R~
with the same Morse indez, i (\) = i_(A), and dim N(7(A)) > 0. In this case, denote by Py (&; \) the
projections of the exponential dichotomies of (4) on RT, then the spaces N(P_(0; X)) NR(P.(0; \)) and
N(T (X)) are isomorphic via u(0) — uf(-).

o )\ is in the essential spectrum Y. if (4) either does not have exponential dichotomies on R™ or on R,
or else if it does, but the Morse indices on R and on R~ differ.

Remark 3  To summarize the relation between Fredholm properties of T and exponential dichotomies of

(4) , we remark that T is Fredholm if, and only if, (4) has exponential dichotomies on BT and on R™.
The Fredholm index of T is then equal to the difference i_(\)—i(X) of the Morse indices of the dichotomies
on R™ and R*. If T()\) is not Fredholm, then typically the range R(T (\)) of T(\) is not closed in H.




Remark4  Suppose that the equation

d
d—£u= A(&N)u (9)

has an exponential dichotomy on I with projections P(&; \) and evolutions ®5(&,(; A) and ®"(£,(; A), then
the equation

d *
d—gl-' =—A(&A)"v (10)

also has an exponential dichotomy on I with projections ﬁ(ﬁ;)\) and evolutions (E‘S{é.,(:; A) and fil“(gf,{:;}.).
The projections and evolutions of (9) and (10) are related via

P(&A) =id—P(&X),  ®(6GA) =0%((,6N),  BUEGA) =D &N

This is a consequence of Definition 1.
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