Stability of Travelling Waves

Dichotomies, spectra and Fredholm properties

Arthur Vromans

arthur.j.vromans@gmail.com

May 2nd 2012

Björn Sandstede

- Professor, Division of Applied Mathematics, Brown University, Providence
- Author of *Stability of travelling waves (2002)*

Overview

Differential Equation

Waves

Overview

Overview

Assumptions

We consider partial differential equations of the form

$$U_t = \mathcal{A}(\partial_x)U + \mathcal{N}(U), \qquad x \in \mathbb{R}, \qquad U \in \mathcal{X}.$$
 (1)

Assumptions

We consider partial differential equations of the form

$$U_t = \mathcal{A}(\partial_x)U + \mathcal{N}(U), \qquad x \in \mathbb{R}, \qquad U \in \mathcal{X}.$$
 (1)

Travelling waves are solutions of (1) of the form

$$U(x,t) = Q(x-ct) \tag{2}$$

Assumptions

We consider partial differential equations of the form

$$U_t = \mathcal{A}(\partial_x)U + \mathcal{N}(U), \qquad x \in \mathbb{R}, \qquad U \in \mathcal{X}.$$
 (1)

Travelling waves are solutions of (1) of the form

$$U(x,t) = Q(x-ct) \tag{2}$$

We introduce coordinate

$$\xi = x - ct$$

Hypothesis The matrix-valued function $A(\xi; \lambda) \in \mathbb{C}^{n \times n}$ is of the form $A(\xi; \lambda) = \tilde{A}(\xi) + \lambda B(\xi)$ (3)
where $\tilde{A}(\cdot)$ and $B(\cdot)$ are in $C^{\infty}(\mathbb{R}, \mathbb{R}^{n \times n})$.

Dichotomies

We consider the eigenvalue λ dependend linearized system of (1)

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = A(\xi;\lambda)u\tag{4}$$

Dichotomies

We consider the eigenvalue λ dependend linearized system of (1)

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = A(\xi;\lambda)u\tag{4}$$

with evolutionary operator Φ with the properties:

$$\Phi(\xi,\zeta) = \Phi(\xi,\zeta;\lambda)$$

$$\Phi(\xi,\xi) = \mathrm{id}, \ \Phi(\xi,\tau)\Phi(\tau,\zeta) = \Phi(\xi,\zeta) \text{ for all } \xi,\tau,\zeta \in \mathbb{R}$$
(5)

$$u(\xi) = \Phi(\xi,\zeta)u_0 \text{ satisfies } (4) \text{ for every } u_0 \in \mathbb{C}^n$$

• With $\Phi^{s}(\xi,\zeta) := \Phi(\xi,\zeta)P(\zeta)$, we have

 $|\Phi^{\rm s}(\xi,\zeta)| \leq K {\rm e}^{\kappa^{\rm s}(\xi-\zeta)}, \qquad \xi \geq \zeta, \qquad \xi,\zeta \in I.$

• With $\Phi^{s}(\xi,\zeta) := \Phi(\xi,\zeta)P(\zeta)$, we have

$$|\Phi^{\mathrm{s}}(\xi,\zeta)| \le K \mathrm{e}^{\kappa^{\mathrm{s}}(\xi-\zeta)}, \qquad \xi \ge \zeta, \qquad \xi,\zeta \in I.$$

• Define $\Phi^{\mathbf{u}}(\xi,\zeta) := \Phi(\xi,\zeta)(\operatorname{id} - P(\zeta))$, then

$$|\Phi^{\mathbf{u}}(\xi,\zeta)| \le K \mathrm{e}^{\kappa^{\mathbf{u}}(\xi-\zeta)}, \qquad \xi \le \zeta, \qquad \xi,\zeta \in I.$$

• With $\Phi^{s}(\xi,\zeta) := \Phi(\xi,\zeta)P(\zeta)$, we have

$$|\Phi^{\mathrm{s}}(\xi,\zeta)| \leq K\mathrm{e}^{\kappa^{\mathrm{s}}(\xi-\zeta)}, \qquad \xi \geq \zeta, \qquad \xi,\zeta \in I.$$

• Define $\Phi^{\mathbf{u}}(\xi,\zeta) := \Phi(\xi,\zeta)(\operatorname{id} - P(\zeta))$, then

$$|\Phi^{\mathbf{u}}(\xi,\zeta)| \le K \mathrm{e}^{\kappa^{\mathbf{u}}(\xi-\zeta)}, \qquad \xi \le \zeta, \qquad \xi,\zeta \in I.$$

• The projections commute with the evolution, $\Phi(\xi,\zeta)P(\zeta) = P(\xi)\Phi(\xi,\zeta)$, so that

$$\begin{split} \Phi^{\rm s}(\xi,\zeta)u_0 &\in {\rm R}(P(\xi)), \qquad \xi \geq \zeta, \qquad \xi,\zeta \in I \\ \Phi^{\rm u}(\xi,\zeta)u_0 &\in {\rm N}(P(\xi)), \qquad \xi \leq \zeta, \qquad \xi,\zeta \in I. \end{split}$$

• With $\Phi^{s}(\xi,\zeta) := \Phi(\xi,\zeta)P(\zeta)$, we have

$$|\Phi^{s}(\xi,\zeta)| \le K e^{\kappa^{s}(\xi-\zeta)}, \qquad \xi \ge \zeta, \qquad \xi,\zeta \in I.$$

• Define $\Phi^{\mathbf{u}}(\xi,\zeta) := \Phi(\xi,\zeta)(\operatorname{id} - P(\zeta))$, then

$$|\Phi^{\mathbf{u}}(\xi,\zeta)| \le K \mathrm{e}^{\kappa^{\mathbf{u}}(\xi-\zeta)}, \qquad \xi \le \zeta, \qquad \xi,\zeta \in I.$$

• The projections commute with the evolution, $\Phi(\xi,\zeta)P(\zeta) = P(\xi)\Phi(\xi,\zeta)$, so that

$\Phi^{\rm s}(\xi,\zeta)u_0\in {\rm R}(P(\xi)),$	$\xi \geq \zeta$,	$\xi,\zeta\in I$
$\Phi^{\mathbf{u}}(\xi,\zeta)u_0\in \mathcal{N}(P(\xi)),$	$\xi \leq \zeta$,	$\xi, \zeta \in I.$

The ξ -independent dimension of $N(P(\xi))$ is referred to as the Morse index of the exponential dichotomy on I. If (4) has exponential dichotomies on \mathbb{R}^+ and on \mathbb{R}^- , the associated Morse indices are denoted by $i_+(\lambda_*)$ and $i_-(\lambda_*)$, respectively.

Theorem 1 Firstly, let I be \mathbb{R}^+ or \mathbb{R}^- . Suppose that $A(\cdot) \in C^0(I, \mathbb{C}^{n \times n})$ and that the equation

7/13

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = A(\xi)u\tag{6}$$

has an exponential dichotomy on I with constants K, κ^{s} and κ^{u} as in Definition 1. There are then positive constants δ_{*} and C such that the following is true.

Theorem 1 Firstly, let I be \mathbb{R}^+ or \mathbb{R}^- . Suppose that $A(\cdot) \in C^0(I, \mathbb{C}^{n \times n})$ and that the equation

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = A(\xi)u\tag{6}$$

has an exponential dichotomy on I with constants K, κ^{s} and κ^{u} as in Definition 1. There are then positive constants δ_{*} and C such that the following is true. If $B(\cdot) \in C^{0}(I, \mathbb{C}^{n \times n})$ such that $\sup_{\xi \in I, |\xi| \ge L} |B(\xi)| < \delta/C$ for some $\delta < \delta_{*}$ and some $L \ge 0$, then a constant $\tilde{K} > 0$ exists such that the equation

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = (A(\xi) + B(\xi))u\tag{7}$$

has an exponential dichotomy on I with constants \tilde{K} , $\kappa^{s} + \delta$ and $\kappa^{u} - \delta$.

Theorem 1 Firstly, let I be \mathbb{R}^+ or \mathbb{R}^- . Suppose that $A(\cdot) \in C^0(I, \mathbb{C}^{n \times n})$ and that the equation

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = A(\xi)u\tag{6}$$

has an exponential dichotomy on I with constants K, κ^{s} and κ^{u} as in Definition 1. There are then positive constants δ_{*} and C such that the following is true. If $B(\cdot) \in C^{0}(I, \mathbb{C}^{n \times n})$ such that $\sup_{\xi \in I, |\xi| \ge L} |B(\xi)| < \delta/C$ for some $\delta < \delta_{*}$ and some $L \ge 0$, then a constant $\tilde{K} > 0$ exists such that the equation

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = (A(\xi) + B(\xi))u\tag{7}$$

has an exponential dichotomy on I with constants \tilde{K} , $\kappa^{s} + \delta$ and $\kappa^{u} - \delta$. Moreover, the projections $P(\xi)$ and evolutions $\Phi^{s}(\xi, \zeta)$ and $\Phi^{u}(\xi, \zeta)$ associated with (7) are δ -close to those associated with (6) for all $\xi, \zeta \in I$ with $|\xi|, |\zeta| \ge L$. Secondly, if $I = \mathbb{R}$, then the above statement is true with L = 0.

Remark 1 If the perturbation $B(\xi)$ in (7) converges to zero as $|\xi| \to \infty$ with $\xi \in I$, then the projections and evolutions of (7) converge to those of (6).

It is also true that, if (4) has an exponential dichotomy for $\lambda = \lambda_*$, then the evolutions and projections that appear in Definition 1 can be chosen to depend analytically on λ for λ close to λ_* .

Remark 1 If the perturbation $B(\xi)$ in (7) converges to zero as $|\xi| \to \infty$ with $\xi \in I$, then the projections and evolutions of (7) converge to those of (6).

It is also true that, if (4) has an exponential dichotomy for $\lambda = \lambda_*$, then the evolutions and projections that appear in Definition 1 can be chosen to depend analytically on λ for λ close to λ_* .

We may wish to replace the condition $\kappa^{s} < 0 < \kappa^{u}$ that appears in Definition 1 by the weaker condition $\kappa^{s} < \kappa^{u}$. Using a transformation for an appropriate η , we see that all the results mentioned above are also true under this weaker condition, i.e. for arbitrary spectral gaps.

Spectra and Fredholm Properties

We consider the family of operators

 $T(\lambda) : \mathcal{D} \longrightarrow \mathcal{H}, \quad u \longmapsto \frac{\mathrm{d}u}{\mathrm{d}\xi} - A(\cdot; \lambda)u$ (8) with parameter λ .

Spectra and Fredholm Properties

We consider the family of operators

 $T(\lambda) : \mathcal{D} \longrightarrow \mathcal{H}, \quad u \longmapsto \frac{\mathrm{d}u}{\mathrm{d}\xi} - A(\cdot; \lambda)u$ (8) with parameter λ .

Recall that an operator $\mathcal{L} : \mathcal{X} \to \mathcal{Y}$ is said to be a Fredholm operator if $R(\mathcal{L})$ is closed in \mathcal{Y} , and the dimension of $N(\mathcal{L})$ and the codimension of $R(\mathcal{L})$ are both finite. The difference dim $N(\mathcal{L})$ – codim $R(\mathcal{L})$ is called the Fredholm index of \mathcal{L} . **Definition 2** (Spectrum) We say that λ is in the spectrum Σ of T if $T(\lambda)$ is not invertible, i.e. if the inverse operator does not exist or is not bounded. We say that $\lambda \in \Sigma$ is in the point spectrum Σ_{pt} of T or, alternatively, that $\lambda \in \Sigma$ is an eigenvalue of T if $T(\lambda)$ is a Fredholm operator with index zero. The complement $\Sigma \setminus \Sigma_{pt} =: \Sigma_{ess}$ is called the essential spectrum. The complement of Σ in \mathbb{C} is the resolvent set of T.

Definition 2 (Spectrum) We say that λ is in the spectrum Σ of T if $T(\lambda)$ is not invertible, i.e. if the inverse operator does not exist or is not bounded. We say that $\lambda \in \Sigma$ is in the point spectrum Σ_{pt} of T or, alternatively, that $\lambda \in \Sigma$ is an eigenvalue of T if $T(\lambda)$ is a Fredholm operator with index zero. The complement $\Sigma \setminus \Sigma_{pt} =: \Sigma_{ess}$ is called the essential spectrum. The complement of Σ in \mathbb{C} is the resolvent set of T.

Remark 2 The point spectrum is often defined as the set of all isolated eigenvalues with finite multiplicity, i.e. as the set $\tilde{\Sigma}_{pt}$ of those λ for which $T(\lambda)$ is Fredholm with index zero, the null space of $T(\lambda)$ is non-trivial, and $T(\tilde{\lambda})$ is invertible for all $\tilde{\lambda}$ in a small neighbourhood of λ (except, of course, for $\tilde{\lambda} = \lambda$).

Theorem 2 Fix $\lambda \in \mathbb{C}$. The following statements are true.

• λ is in the resolvent set of T if, and only if, (4) has an exponential dichotomy on \mathbb{R} .

Theorem 2

11/13

Fix $\lambda \in \mathbb{C}$. The following statements are true.

- λ is in the resolvent set of T if, and only if, (4) has an exponential dichotomy on \mathbb{R} .
- λ is in the point spectrum Σ_{pt} of T if, and only if, (4) has exponential dichotomies on ℝ⁺ and on ℝ⁻ with the same Morse index, i₊(λ) = i₋(λ), and dim N(T(λ)) > 0. In this case, denote by P_±(ξ; λ) the projections of the exponential dichotomies of (4) on ℝ[±], then the spaces N(P₋(0; λ)) ∩ R(P₊(0; λ)) and N(T(λ)) are isomorphic via u(0) → u(·).

Theorem 2

11/13

Fix $\lambda \in \mathbb{C}$. The following statements are true.

- λ is in the resolvent set of T if, and only if, (4) has an exponential dichotomy on \mathbb{R} .
- λ is in the point spectrum Σ_{pt} of T if, and only if, (4) has exponential dichotomies on ℝ⁺ and on ℝ⁻ with the same Morse index, i₊(λ) = i₋(λ), and dim N(T(λ)) > 0. In this case, denote by P_±(ξ; λ) the projections of the exponential dichotomies of (4) on ℝ[±], then the spaces N(P₋(0; λ)) ∩ R(P₊(0; λ)) and N(T(λ)) are isomorphic via u(0) → u(·).
- λ is in the essential spectrum Σ_{ess} if (4) either does not have exponential dichotomies on ℝ⁺ or on ℝ⁻, or else if it does, but the Morse indices on ℝ⁺ and on ℝ⁻ differ.

Theorem 2

11/13

Fix $\lambda \in \mathbb{C}$. The following statements are true.

- λ is in the resolvent set of T if, and only if, (4) has an exponential dichotomy on \mathbb{R} .
- λ is in the point spectrum Σ_{pt} of T if, and only if, (4) has exponential dichotomies on ℝ⁺ and on ℝ⁻ with the same Morse index, i₊(λ) = i₋(λ), and dim N(T(λ)) > 0. In this case, denote by P_±(ξ; λ) the projections of the exponential dichotomies of (4) on ℝ[±], then the spaces N(P₋(0; λ)) ∩ R(P₊(0; λ)) and N(T(λ)) are isomorphic via u(0) → u(·).
- λ is in the essential spectrum Σ_{ess} if (4) either does not have exponential dichotomies on ℝ⁺ or on ℝ⁻, or else if it does, but the Morse indices on ℝ⁺ and on ℝ⁻ differ.

Remark 3 To summarize the relation between Fredholm properties of T and exponential dichotomies of (4), we remark that T is Fredholm if, and only if, (4) has exponential dichotomies on \mathbb{R}^+ and on \mathbb{R}^- . The Fredholm index of T is then equal to the difference $i_-(\lambda) - i_+(\lambda)$ of the Morse indices of the dichotomies on \mathbb{R}^- and \mathbb{R}^+ . If $T(\lambda)$ is not Fredholm, then typically the range $\mathbb{R}(T(\lambda))$ of $T(\lambda)$ is not closed in \mathcal{H} . Remark 4 Suppose that the equation

$$\frac{\mathrm{d}}{\mathrm{d}\xi}u = A(\xi;\lambda)u\tag{9}$$

has an exponential dichotomy on I with projections $P(\xi; \lambda)$ and evolutions $\Phi^{s}(\xi, \zeta; \lambda)$ and $\Phi^{u}(\xi, \zeta; \lambda)$, then the equation

$$\frac{\mathrm{d}}{\mathrm{d}\xi}v = -A(\xi;\lambda)^*v \tag{10}$$

also has an exponential dichotomy on I with projections $\tilde{P}(\xi;\lambda)$ and evolutions $\tilde{\Phi}^{s}(\xi,\zeta;\lambda)$ and $\tilde{\Phi}^{u}(\xi,\zeta;\lambda)$. The projections and evolutions of (9) and (10) are related via

$$\tilde{P}(\xi;\lambda) = \operatorname{id} - P(\xi;\lambda)^*, \qquad \tilde{\Phi}^{\mathrm{s}}(\xi,\zeta;\lambda) = \Phi^{\mathrm{u}}(\zeta,\xi;\lambda)^*, \qquad \tilde{\Phi}^{\mathrm{u}}(\xi,\zeta;\lambda) = \Phi^{\mathrm{s}}(\zeta,\xi;\lambda)^*$$

This is a consequence of Definition 1.

Summary

