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Differential Operators

Boundary Value Problem

Study boundary value problems: bounded, open U ⊂ Rn.
To find: u : U → R.
Let f : U → R, g : ∂U → R given functions.{

Lu = f (x) in U

u = g(x) on ∂U,
(1)

where L a second-order partial differential operator, given by

Lu =
n∑

i ,j=1

aij(x)∂iju +
n∑

i=1

bi (x)∂iu︸ ︷︷ ︸
Mu

+c(x)u. (2)
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Differential Operators

Elliptic Operators

Definition (Elliptic Operator)

L is an (uniformly) elliptic operator if there exists θ > 0 such that for a.e.
x ∈ U and all ξ ∈ Rn,

θ|ξ|2 ≤
n∑

i ,j=1

aij(x)ξiξj . (3)

L is pointwise elliptic if θ depends on x ∈ U.

L is elliptic degenerate if 0 ≤
∑n

i ,j=1 aij(x)ξiξj , and there exists a fixed
unit vector ζ such that for all x ∈ U,

θ ≤
n∑

i ,j=1

aijζiζj . (4)
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Differential Operators

Parabolic Operators

Definition (Parabolic Operator)

Let Q := (0,T )× U for some T > 0. A parabolic operator is operator of
the form

P := ∂t −
n∑

i ,j=1

aij(t, x)∂ij −
n∑

i=1

bi (t, x)∂i − c(t, x), (5)

where coefficients satisfy ellipticity conditions.

Can write: P = ∂t − L.
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Differential Operators

Examples

Example (Elliptic Operators)

Laplace operator: ∆u =
∑n

i=1 uxixi = 0;

Helmholtz equation: ∆u + λu = 0.

Example (Parabolic Operators)

Heat operator: ut −∆u = 0;

Kolmogorov’s equation: ut −
∑n

i ,j=1 aijuxixj +
∑n

i=1 biuxi = 0;

Scalar reaction-diffusion equation: ut −∆u = f (u).
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The Maximum Principle The Weak Maximum Principle

The Weak Maximum Principle

Assumptions:
From now on: bounded, open U ⊂ Rn with boundary smooth enough.
Furthermore: u ∈ C 2(U) ∩ C (U).

All results also for Lu ≤ 0: gives “minU u”.

Theorem (Weak Maximum Principle)

Let L elliptic (degenerate) operator with Lu ≥ 0 in U.

1 If c(x) ≡ 0 in U then maxU u = max∂U u.

2 If c(x) ≤ 0 in U and maxU ≥ 0, then maxU u = max∂U u.

Weaker form:

2 If not assumed maxU u ≥ 0, then maxU u ≤ max∂U u+.
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The Maximum Principle The Weak Maximum Principle

Proof (1).

Consider first Lu > 0 in U. Then maximum on boundary: x0 ∈ ∂U, with

Du(x0) = 0; D2u(x0) ≤ 0. (6)

x0 /∈ U: for nonnegative, symmetric matrices (αij), (βij),
∑n

i ,j=1 αijβij ≥ 0.
So, at x0:

Lu(x0) =
n∑

i ,j=1

aij∂iju(x0) +
n∑

i=1

bi∂iu(x0) =
n∑

i ,j=1

aij(x0)∂iju(x0) ≤ 0, (7)

contradiction.
General: define uε := u(x) + εeλx1 , ε > 0, λ > 0 sufficiently large. This
function satisfies:

Luε > 0 in U ⇒ max
U

uε = max
∂U

uε. (8)

Letting ε→ 0 gives the result.
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The Maximum Principle The Weak Maximum Principle

Proof (2).

Let U+ := {u > 0} ⊂ U, then

Mu = Lu − c(x)u ≥ 0 on U+

u = 0 on ∂U+.
(9)

Hence, by part (1), if U+ 6= ∅:

0 ≤ max
U

u = max
U

+
u = max

∂U+
u = max

∂U+∩∂U
u = max

∂U
u. (10)

Otherwise: u ≤ 0 everywhere.
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The Maximum Principle The Weak Maximum Principle

Corollary

Let L an elliptic (degenerate) operator with c(x) ≤ 0 in U.

If Lu ≥ 0 in U and u ≤ 0 on ∂U, then u ≤ 0 in U.
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The Maximum Principle The Weak Maximum Principle

Weak Maximum Principle for Parabolic Operator

Parabolic boundary of Q: ∂pQ := {{0} × U} ∪ {[0,T ]× ∂U}.

Theorem (Weak Maximum Principle for Parabolic Operator)

Let P = ∂t − L a parabolic degenerate operator, u C 1 wrt. t, such that
Pu ≤ 0 in U.

1 If c(t, x) ≡ 0, or

2 if c(t, x) ≤ 0 and maxQ u ≥ 0,

then: maxQ u = max∂pQ u.

Proof.

The proof goes like the elliptic case.
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The Maximum Principle The Strong Maximum Principle

The Strong Maximum Principle

Theorem (Strong Maximum Principle)

Let L be elliptic operator, U connected, u such that Lu ≥ 0 in U.

1 If c ≡ 0 and maxU u = u(x0) at interior point x0 ∈ U,
then u constant in U.

2 If c(x) ≤ 0 and u(x0) = maxU u ≥ 0, then u constant in U.

The proof uses Hopf’s Lemma.
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The Maximum Principle The Strong Maximum Principle

Hopf’s Lemma

Lemma (Hopf)

Let L and u as before. Suppose there exists p ∈ ∂U such that u(p) > u(x)
for all x ∈ U.

1 If c ≡ 0 in U, then
∂u

∂ξ
(p) > 0, (11)

where ξ the outer unit normal at p.

2 If c ≤ 0 in U and u(p) ≥ 0, then same result holds.
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The Maximum Principle Application to Boundary-Value Problems

Application to Boundary-Value Problems

Dirichlet problem: let f : U → R, g : ∂U → R given functions.

Theorem

When it exists, the solution of{
Lu = f (x) in U

u = g(x) on ∂U,
(12)

is unique.

Proof.

Difference w = v − u of two solutions u, v satisfies homogeneous problem.
From the Corollary, it follows that w ≤ 0 and w ≥ 0, hence w ≡ 0.

Similar results for other boundary value problems.

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 16 / 26



The Maximum Principle Application to Boundary-Value Problems

Application to Boundary-Value Problems

Dirichlet problem: let f : U → R, g : ∂U → R given functions.

Theorem

When it exists, the solution of{
Lu = f (x) in U

u = g(x) on ∂U,
(12)

is unique.

Proof.

Difference w = v − u of two solutions u, v satisfies homogeneous problem.
From the Corollary, it follows that w ≤ 0 and w ≥ 0, hence w ≡ 0.

Similar results for other boundary value problems.

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 16 / 26



The Maximum Principle Application to Boundary-Value Problems

Application to Boundary-Value Problems

Dirichlet problem: let f : U → R, g : ∂U → R given functions.

Theorem

When it exists, the solution of{
Lu = f (x) in U

u = g(x) on ∂U,
(12)

is unique.

Proof.

Difference w = v − u of two solutions u, v satisfies homogeneous problem.
From the Corollary, it follows that w ≤ 0 and w ≥ 0, hence w ≡ 0.

Similar results for other boundary value problems.

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 16 / 26



Eigenvalues and Solutions

Progression

1 Differential Operators

2 The Maximum Principle
The Weak Maximum Principle
The Strong Maximum Principle
Application to Boundary-Value Problems

3 Eigenvalues and Solutions
Principal Eigenvalue
Sub- and Supersolutions

4 Outlook

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 17 / 26



Eigenvalues and Solutions Principal Eigenvalue

Class C k,γ functions

Definition

Function u : U → R is of class C k,γ , 0 < γ < 1, if the norm

‖u‖C k,γ(U) :=
∑
|α|≤k

‖Dαu‖C(U) +
∑
|α|=k

[Dαu]C0,γ(U)

:=
∑
|α|≤k

sup
x∈U
|Dαu(x)|+

∑
|α|=k

sup
x ,y∈U

(
|Dαu(x)− Dαu(y)|

|x − y |γ

)
(13)

is finite.
These functions constitute the Hölder space C k,γ(U), which is Banach.
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Eigenvalues and Solutions Principal Eigenvalue

Principal Eigenvalue

Definition

Let U be domain with ∂U of class C 2,γ ; L elliptic operator with
coefficients of class C 0,γ(U).
Suppose ϕ1 ≥ 0 is eigenfunction of −L, which satisfies

ϕ1 > 0 in U

∂ϕ1

∂ξ
< 0 on ∂U.

(14)

Eigenvalue λ1 corresponding to ϕ1 is simple and has

λ1 ≤ <(λ). (15)

Eigenvalue λ1 is called principal eigenvalue and eigenfunction ϕ1 principal
eigenfunction.
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Eigenvalues and Solutions Principal Eigenvalue

Existence and Uniqueness

Theorem

This eigenvalue λ1 exists and is unique.

Proof.

The proof uses Krein-Rutman theory, by taking an order on space
C 1

0 (U).
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Eigenvalues and Solutions Sub- and Supersolutions

Sub- and Supersolutions

Want to find C 2-solution of{
Lu + f (x , u) = 0 in U

u = 0 on ∂U.
(16)

Definition (Sub-/Supersolution)

A subsolution is function u ∈ C 2(U) satisfying{
Lu + f (x , u) ≥ 0 in U

u ≤ 0 on ∂U.
(17)

Similarly, a supersolution is function u ∈ C 2(U) satisfying{
Lu + f (x , u) ≤ 0 in U

u ≥ 0 on ∂U.
(18)
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Eigenvalues and Solutions Sub- and Supersolutions

Theorem

Let U of class C 2,γ , L elliptic operator with coefficients of class C 0,γ and
f : U × R→ R satisfying:

For any r > 0, there exists C (r) > 0 such that for all x , y ∈ U,
s, t ∈ [−r , r ]

|f (x , s)− f (y , t)| ≤ C (|x − y |γ + |s − t|). (19)

Assume there exists a subsolution u and a supersolution u, both C 0,γ ,
such that u ≤ u. Then there exist at least one solution u with u ≤ u ≤ u.
Moreover, there is a minimal and a maximal one.

Can generalize to Sobolev spaces. Then f (x , s) has Carathéodory
conditions: {

x → f (x , s) is measurable in x , for all s ∈ R,
s → f (x , s) is continuous in s, for a.e. x ∈ U.

(20)
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(20)
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Eigenvalues and Solutions Sub- and Supersolutions

Proof.

Consider sequences of functions (vn) and (wn), solutions for
L− C + f (x , ·) + Cs and satisfying:

− r ≤ u = v0 ≤ v1 ≤ . . . ≤ vn ≤ . . . ≤ wn ≤ . . . ≤ w1 ≤ w0 = u ≤ r .
(21)

(vn) and (wn) converge to solutions v ,w ∈ C 2,γ

If u ∈ C 2 is solution with u ≤ u ≤ u, then v ≤ u ≤ w .

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 23 / 26



Eigenvalues and Solutions Sub- and Supersolutions

Proof.

Consider sequences of functions (vn) and (wn), solutions for
L− C + f (x , ·) + Cs and satisfying:

− r ≤ u = v0 ≤ v1 ≤ . . . ≤ vn ≤ . . . ≤ wn ≤ . . . ≤ w1 ≤ w0 = u ≤ r .
(21)

(vn) and (wn) converge to solutions v ,w ∈ C 2,γ

If u ∈ C 2 is solution with u ≤ u ≤ u, then v ≤ u ≤ w .

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 23 / 26



Eigenvalues and Solutions Sub- and Supersolutions

Proof.

Consider sequences of functions (vn) and (wn), solutions for
L− C + f (x , ·) + Cs and satisfying:

− r ≤ u = v0 ≤ v1 ≤ . . . ≤ vn ≤ . . . ≤ wn ≤ . . . ≤ w1 ≤ w0 = u ≤ r .
(21)

(vn) and (wn) converge to solutions v ,w ∈ C 2,γ

If u ∈ C 2 is solution with u ≤ u ≤ u, then v ≤ u ≤ w .

Dirk van Kekem Maximum Principle and Sub-/Supersolutions April 18, 2012 23 / 26



Eigenvalues and Solutions Sub- and Supersolutions

Solutions in Time

What happens if we start with some sub-/supersolution?

If subsolution u blows up, then solution u blows up;

If subsolution u blows up in finite time, then solution u blows up in
finite time;

If u is global (in time) supersolution above u, then u global.
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Outlook

Progression

1 Differential Operators

2 The Maximum Principle
The Weak Maximum Principle
The Strong Maximum Principle
Application to Boundary-Value Problems

3 Eigenvalues and Solutions
Principal Eigenvalue
Sub- and Supersolutions

4 Outlook
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Outlook

Further reading

Evans, Lawrence C.
Partial Differential Equations
American Mathematical Society, 2nd edition, 2010.

Berestycki, Henri and Hamel, François
Chapter 1: The Maximum Principle
Yet unpublished.

Next time: more dynamics

To be continued
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