On the Top of a Function. Maximum Principle and Sub-/Supersolutions

Dirk van Kekem

April 18, 2012

Dirk van Kekem

Maximum Principle and Sub-/Supersolutions

3 April 18, 2012 1 / 26

- - E

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Differential Operators

2 The Maximum Principle

- The Weak Maximum Principle
- The Strong Maximum Principle
- Application to Boundary-Value Problems

8 Eigenvalues and Solutions

- Principal Eigenvalue
- Sub- and Supersolutions

Progression

Differential Operators

2 The Maximum Principle

- The Weak Maximum Principle
- The Strong Maximum Principle
- Application to Boundary-Value Problems

B Eigenvalues and Solutions

- Principal Eigenvalue
- Sub- and Supersolutions

) Outlook

Differential Operators

Boundary Value Problem

Study boundary value problems: bounded, open $U \subset \mathbb{R}^n$. To find: $u : \overline{U} \to \mathbb{R}$. Let $f : U \to \mathbb{R}, g : \partial U \to \mathbb{R}$ given functions.

$$\begin{cases} Lu = f(x) \text{ in } U\\ u = g(x) \text{ on } \partial U, \end{cases}$$
(1)

where L a second-order partial differential operator, given by

$$Lu = \underbrace{\sum_{i,j=1}^{n} a_{ij}(x)\partial_{ij}u + \sum_{i=1}^{n} b_i(x)\partial_i u + c(x)u.}_{Mu}$$
(2)

Elliptic Operators

Definition (Elliptic Operator)

L is an *(uniformly) elliptic operator* if there exists $\theta > 0$ such that for a.e. $x \in U$ and all $\xi \in \mathbb{R}^n$,

$$|\theta|\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j.$$
 (3)

L is *pointwise elliptic* if θ depends on $x \in U$.

Elliptic Operators

Definition (Elliptic Operator)

L is an *(uniformly) elliptic operator* if there exists $\theta > 0$ such that for a.e. $x \in U$ and all $\xi \in \mathbb{R}^n$,

$$\theta|\xi|^2 \le \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j.$$
(3)

L is *pointwise elliptic* if θ depends on $x \in U$. *L* is *elliptic degenerate* if $0 \leq \sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j$, and there exists a fixed unit vector ζ such that for all $x \in U$,

$$\theta \leq \sum_{i,j=1}^{n} a_{ij} \zeta_i \zeta_j.$$
(4)

Parabolic Operators

Definition (Parabolic Operator)

Let $Q := (0, T) \times U$ for some T > 0. A *parabolic operator* is operator of the form

$$P := \partial_t - \sum_{i,j=1}^n a_{ij}(t,x)\partial_{ij} - \sum_{i=1}^n b_i(t,x)\partial_i - c(t,x),$$
(5)

where coefficients satisfy ellipticity conditions.

Parabolic Operators

Definition (Parabolic Operator)

Let $Q := (0, T) \times U$ for some T > 0. A *parabolic operator* is operator of the form

$$P := \partial_t - \sum_{i,j=1}^n a_{ij}(t,x)\partial_{ij} - \sum_{i=1}^n b_i(t,x)\partial_i - c(t,x),$$
(5)

where coefficients satisfy ellipticity conditions.

Can write: $P = \partial_t - L$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Examples

Example (Elliptic Operators)

- Laplace operator: $\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0;$
- Helmholtz equation: $\Delta u + \lambda u = 0$.

- 4 週 ト - 4 三 ト - 4 三 ト

Examples

Example (Elliptic Operators)

- Laplace operator: $\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0;$
- Helmholtz equation: $\Delta u + \lambda u = 0$.

Example (Parabolic Operators)

- Heat operator: $u_t \Delta u = 0$;
- Kolmogorov's equation: $u_t \sum_{i,j=1}^n a_{ij}u_{x_ix_j} + \sum_{i=1}^n b_iu_{x_i} = 0;$
- Scalar reaction-diffusion equation: $u_t \Delta u = f(u)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Differential Operators

2 The Maximum Principle

- The Weak Maximum Principle
- The Strong Maximum Principle
- Application to Boundary-Value Problems

Bigenvalues and Solutions

- Principal Eigenvalue
- Sub- and Supersolutions

🚺 Outlook

Assumptions:

From now on: bounded, open $U \subset \mathbb{R}^n$ with boundary smooth enough. Furthermore: $u \in C^2(U) \cap C(\overline{U})$.

Assumptions:

From now on: bounded, open $U \subset \mathbb{R}^n$ with boundary smooth enough. Furthermore: $u \in C^2(U) \cap C(\overline{U})$.

All results also for $Lu \leq 0$: gives "min_{\overline{U}} u".

Assumptions:

From now on: bounded, open $U \subset \mathbb{R}^n$ with boundary smooth enough. Furthermore: $u \in C^2(U) \cap C(\overline{U})$.

All results also for $Lu \leq 0$: gives "min_{\overline{U}} u".

Theorem (Weak Maximum Principle)

Let L elliptic (degenerate) operator with $Lu \ge 0$ in U.

0 If
$$c(x) \equiv 0$$
 in U then max_U $u = \max_{\partial U} u$.

2 If $c(x) \leq 0$ in U and $\max_{\overline{U}} \geq 0$, then $\max_{\overline{U}} u = \max_{\partial U} u$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Assumptions:

From now on: bounded, open $U \subset \mathbb{R}^n$ with boundary smooth enough. Furthermore: $u \in C^2(U) \cap C(\overline{U})$.

All results also for $Lu \leq 0$: gives "min $\overline{U} u$ ".

Theorem (Weak Maximum Principle)

Let *L* elliptic (degenerate) operator with $Lu \ge 0$ in *U*.

9 If
$$c(x) \equiv 0$$
 in U then max_U $u = \max_{\partial U} u$.

2 If $c(x) \leq 0$ in U and $\max_{\overline{U}} \geq 0$, then $\max_{\overline{U}} u = \max_{\partial U} u$.

Weaker form:

If not assumed
$$\max_{\overline{U}} u \ge 0$$
, then $\max_{\overline{U}} u \le \max_{\partial U} u^+$.

< @ ト < 注 ト < 注 ト - 注

Consider first Lu > 0 in U. Then maximum on boundary: $x_0 \in \partial U$, with

$$Du(x_0) = 0; \quad D^2u(x_0) \le 0.$$
 (6)

Proof(1).

Consider first Lu > 0 in U. Then maximum on boundary: $x_0 \in \partial U$, with

$$Du(x_0) = 0; \quad D^2u(x_0) \le 0.$$
 (6)

 $x_0 \notin U$: for nonnegative, symmetric matrices $(\alpha_{ij}), (\beta_{ij}), \sum_{i,j=1}^{n} \alpha_{ij}\beta_{ij} \ge 0$.

Proof (1).

Consider first Lu > 0 in U. Then maximum on boundary: $x_0 \in \partial U$, with

$$Du(x_0) = 0; \quad D^2u(x_0) \le 0.$$
 (6)

 $x_0 \notin U$: for nonnegative, symmetric matrices $(\alpha_{ij}), (\beta_{ij}), \sum_{i,j=1}^{n} \alpha_{ij}\beta_{ij} \ge 0$. So, at x_0 :

$$Lu(x_0) = \sum_{i,j=1}^n a_{ij} \partial_{ij} u(x_0) + \sum_{i=1}^n b_i \partial_i u(x_0) = \sum_{i,j=1}^n a_{ij}(x_0) \partial_{ij} u(x_0) \le 0, \quad (7)$$

contradiction.

Proof (1).

Consider first Lu > 0 in U. Then maximum on boundary: $x_0 \in \partial U$, with

$$Du(x_0) = 0; \quad D^2u(x_0) \le 0.$$
 (6)

 $x_0 \notin U$: for nonnegative, symmetric matrices $(\alpha_{ij}), (\beta_{ij}), \sum_{i,j=1}^n \alpha_{ij}\beta_{ij} \ge 0$. So, at x_0 :

$$Lu(x_0) = \sum_{i,j=1}^n a_{ij} \partial_{ij} u(x_0) + \sum_{i=1}^n b_i \partial_i u(x_0) = \sum_{i,j=1}^n a_{ij}(x_0) \partial_{ij} u(x_0) \le 0, \quad (7)$$

contradiction.

General: define $u_{\varepsilon} := u(x) + \varepsilon e^{\lambda x_1}$, $\varepsilon > 0$, $\lambda > 0$ sufficiently large. This function satisfies:

$$Lu_{\varepsilon} > 0 \text{ in } U \implies \max_{\overline{U}} u_{\varepsilon} = \max_{\partial U} u_{\varepsilon}.$$
 (8)

Proof (1).

Consider first Lu > 0 in U. Then maximum on boundary: $x_0 \in \partial U$, with

$$Du(x_0) = 0; \quad D^2u(x_0) \le 0.$$
 (6)

 $x_0 \notin U$: for nonnegative, symmetric matrices $(\alpha_{ij}), (\beta_{ij}), \sum_{i,j=1}^n \alpha_{ij}\beta_{ij} \ge 0$. So, at x_0 :

$$Lu(x_0) = \sum_{i,j=1}^n a_{ij} \partial_{ij} u(x_0) + \sum_{i=1}^n b_i \partial_i u(x_0) = \sum_{i,j=1}^n a_{ij}(x_0) \partial_{ij} u(x_0) \le 0, \quad (7)$$

contradiction.

General: define $u_{\varepsilon} := u(x) + \varepsilon e^{\lambda x_1}$, $\varepsilon > 0$, $\lambda > 0$ sufficiently large. This function satisfies:

$$Lu_{\varepsilon} > 0 \text{ in } U \Rightarrow \max_{\overline{U}} u_{\varepsilon} = \max_{\partial U} u_{\varepsilon}.$$
 (8)

Letting $\varepsilon \rightarrow 0$ gives the result.

April 18, 2012 10 / 26

Proof (2).

Let $U^+ := \{u > 0\} \subset U$, then

$$Mu = Lu - c(x)u \ge 0$$
 on U^+
 $u = 0$ on ∂U^+ .

Dirk van Kekem

Maximum Principle and Sub-/Supersolutions

April 18, 2012 11 / 26

3

<ロ> (日) (日) (日) (日) (日)

(9)

Proof(2). Let $U^+ := \{u > 0\} \subset U$, then $Mu = Lu - c(x)u \ge 0$ on U^+ (9)u = 0 on ∂U^+ Hence, by part (1), if $U^+ \neq \emptyset$: (10) $0 \leq \max_{\overline{U}} u = \max_{\overline{U}^+} u = \max_{\partial U^+} u = \max_{\partial U^+ \cap \partial U} u = \max_{\partial U} u.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof (2).	
Let $U^+:=\{u>0\}\subset U$, then	
$egin{aligned} \mathcal{M} u &= L u - c(x) u \geq 0 ext{ on } U^+ \ u &= 0 ext{ on } \partial U^+. \end{aligned}$	(9)
Hence, by part (1), if $U^+ eq \emptyset$:	
$0 \leq \max_{\overline{U}} u = \max_{\overline{U}^+} u = \max_{\partial U^+} u = \max_{\partial U^+ \cap \partial U} u = \max_{\partial U} u.$	(10)
Otherwise: $u \leq 0$ everywhere.	

Corollary

Let L an elliptic (degenerate) operator with $c(x) \le 0$ in U. If $Lu \ge 0$ in U and $u \le 0$ on ∂U , then $u \le 0$ in U.

イロト 不得下 イヨト イヨト

Weak Maximum Principle for Parabolic Operator

Parabolic boundary of $Q: \partial_p Q := \{\{0\} \times \overline{U}\} \cup \{[0, T] \times \partial U\}.$

Theorem (Weak Maximum Principle for Parabolic Operator)

Let $P = \partial_t - L$ a parabolic degenerate operator, $u C^1$ wrt. t, such that $Pu \leq 0$ in U.

- If $c(t,x) \equiv 0$, or
- 2 if $c(t,x) \leq 0$ and $\max_{\overline{Q}} u \geq 0$,

then: $\max_{\overline{Q}} u = \max_{\partial_p Q} u$.

Weak Maximum Principle for Parabolic Operator

Parabolic boundary of $Q: \partial_p Q := \{\{0\} \times \overline{U}\} \cup \{[0, T] \times \partial U\}.$

Theorem (Weak Maximum Principle for Parabolic Operator)

Let $P = \partial_t - L$ a parabolic degenerate operator, $u C^1$ wrt. t, such that $Pu \leq 0$ in U.

- If $c(t,x) \equiv 0$, or
- 2 if $c(t,x) \leq 0$ and $\max_{\overline{Q}} u \geq 0$,

then: $\max_{\overline{Q}} u = \max_{\partial_p Q} u$.

Proof.

The proof goes like the elliptic case.

- 本間 ト イヨ ト イヨ ト 三 ヨ

The Strong Maximum Principle

Theorem (Strong Maximum Principle)

Let L be elliptic operator, U connected, u such that $Lu \ge 0$ in U.

- If $c \equiv 0$ and $\max_{\overline{U}} u = u(x_0)$ at interior point $x_0 \in U$, then u constant in U.
- **2** If $c(x) \leq 0$ and $u(x_0) = \max_U u \geq 0$, then u constant in U.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The Strong Maximum Principle

Theorem (Strong Maximum Principle)

Let L be elliptic operator, U connected, u such that $Lu \ge 0$ in U.

• If $c \equiv 0$ and $\max_{\overline{U}} u = u(x_0)$ at interior point $x_0 \in U$, then u constant in U.

2 If
$$c(x) \leq 0$$
 and $u(x_0) = \max_U u \geq 0$, then u constant in U .

The proof uses Hopf's Lemma.

• • = • • = •

Hopf's Lemma

Lemma (Hopf)

Let L and u as before. Suppose there exists $p \in \partial U$ such that u(p) > u(x)for all $x \in U$.

• If
$$c \equiv 0$$
 in U , then

$$\frac{\partial u}{\partial \xi}(p) > 0,$$
 (11)

where ξ the outer unit normal at p.

2 If $c \leq 0$ in U and $u(p) \geq 0$, then same result holds.

くほと くほと くほと

Application to Boundary-Value Problems

Dirichlet problem: let $f: U \to \mathbb{R}, g: \partial U \to \mathbb{R}$ given functions.

Theorem

When it exists, the solution of

$$\begin{cases} Lu = f(x) \text{ in } U\\ u = g(x) \text{ on } \partial U, \end{cases}$$

is unique.

A B F A B F

(12)

Application to Boundary-Value Problems

Dirichlet problem: let $f: U \to \mathbb{R}, g: \partial U \to \mathbb{R}$ given functions.

Theorem

When it exists, the solution of

$$\begin{cases} Lu = f(x) \text{ in } U\\ u = g(x) \text{ on } \partial U, \end{cases}$$

is unique.

Proof.

Difference w = v - u of two solutions u, v satisfies homogeneous problem. From the Corollary, it follows that $w \le 0$ and $w \ge 0$, hence $w \equiv 0$.

くほと くほと くほと

(12)

Application to Boundary-Value Problems

Dirichlet problem: let $f: U \to \mathbb{R}, g: \partial U \to \mathbb{R}$ given functions.

Theorem

When it exists, the solution of

$$\begin{cases} Lu = f(x) \text{ in } U\\ u = g(x) \text{ on } \partial U, \end{cases}$$

(12)

is unique.

Proof.

Difference w = v - u of two solutions u, v satisfies homogeneous problem. From the Corollary, it follows that $w \le 0$ and $w \ge 0$, hence $w \equiv 0$.

Similar results for other boundary value problems.

Dirk van Kekem

Maximum Principle and Sub-/Supersolutions

April 18, 2012 16 / 26

ヘロト 不良 トイヨト イヨト

Progression

Differential Operators

2) The Maximum Principle

- The Weak Maximum Principle
- The Strong Maximum Principle
- Application to Boundary-Value Problems

8 Eigenvalues and Solutions

- Principal Eigenvalue
- Sub- and Supersolutions

🛯 Outlook

Class $C^{k,\gamma}$ functions

Definition

Function $u: U \to \mathbb{R}$ is of class $C^{k,\gamma}$, $0 < \gamma < 1$, if the norm

These functions constitute the *Hölder space* $C^{k,\gamma}(\overline{U})$, which is Banach.

Principal Eigenvalue

Definition

Let U be domain with ∂U of class $C^{2,\gamma}$; L elliptic operator with coefficients of class $C^{0,\gamma}(\overline{U})$. Suppose $\varphi_1 \ge 0$ is eigenfunction of -L, which satisfies

$$\begin{cases} \varphi_1 > 0 \text{ in } U\\ \frac{\partial \varphi_1}{\partial \xi} < 0 \text{ on } \partial U. \end{cases}$$
(14)

イロト イポト イヨト イヨト

Principal Eigenvalue

Definition

Let U be domain with ∂U of class $C^{2,\gamma}$; L elliptic operator with coefficients of class $C^{0,\gamma}(\overline{U})$.

Suppose $\varphi_1 \ge 0$ is eigenfunction of -L, which satisfies

$$\begin{cases} \varphi_1 > 0 \text{ in } U\\ \frac{\partial \varphi_1}{\partial \xi} < 0 \text{ on } \partial U. \end{cases}$$
(14)

Eigenvalue λ_1 corresponding to φ_1 is simple and has

$$\lambda_1 \le \Re(\lambda). \tag{15}$$

イロト 不得 トイヨト イヨト 二日

Principal Eigenvalue

Definition

Let U be domain with ∂U of class $C^{2,\gamma}$; L elliptic operator with coefficients of class $C^{0,\gamma}(\overline{U})$.

Suppose $\varphi_1 \ge 0$ is eigenfunction of -L, which satisfies

$$\begin{cases} \varphi_1 > 0 \text{ in } U\\ \frac{\partial \varphi_1}{\partial \xi} < 0 \text{ on } \partial U. \end{cases}$$
(14)

Eigenvalue λ_1 corresponding to φ_1 is simple and has

$$\lambda_1 \le \Re(\lambda). \tag{15}$$

Eigenvalue λ_1 is called *principal eigenvalue* and eigenfunction φ_1 *principal eigenfunction*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Existence and Uniqueness

Theorem

This eigenvalue λ_1 exists and is unique.

Existence and Uniqueness

Theorem

This eigenvalue λ_1 exists and is unique.

Proof.

The proof uses Krein-Rutman theory, by taking an order on space $C_0^1(\overline{U})$.

Sub- and Supersolutions

Want to find C^2 -solution of

$$\begin{cases} Lu + f(x, u) = 0 \text{ in } U\\ u = 0 \text{ on } \partial U. \end{cases}$$
(16)

< 口 > < 同 >

- 4 ⊒ →

3

Sub- and Supersolutions

Want to find C^2 -solution of

$$\begin{cases} Lu + f(x, u) = 0 \text{ in } U\\ u = 0 \text{ on } \partial U. \end{cases}$$
(16)

Definition (Sub-/Supersolution)

A subsolution is function $\underline{u} \in C^2(U)$ satisfying

$$\begin{cases} L\underline{u} + f(x, \underline{u}) \ge 0 \text{ in } U\\ \underline{u} \le 0 \text{ on } \partial U. \end{cases}$$
(17)

Similarly, a supersolution is function $\overline{u} \in C^2(U)$ satisfying

$$\begin{cases} L\overline{u} + f(x, \overline{u}) \le 0 \text{ in } U\\ \overline{u} \ge 0 \text{ on } \partial U. \end{cases}$$
(18)

Maximum Principle and Sub-/Supersolutions

April 18, 2012 21 / 26

Theorem

Let U of class $C^{2,\gamma}$, L elliptic operator with coefficients of class $C^{0,\gamma}$ and $f: \overline{U} \times \mathbb{R} \to \mathbb{R}$ satisfying:

For any r > 0, there exists C(r) > 0 such that for all $x, y \in \overline{U}$, $s, t \in [-r, r]$

$$|f(x,s) - f(y,t)| \le C(|x-y|^{\gamma} + |s-t|).$$
 (19)

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

Let U of class $C^{2,\gamma}$, L elliptic operator with coefficients of class $C^{0,\gamma}$ and $f: \overline{U} \times \mathbb{R} \to \mathbb{R}$ satisfying:

For any r > 0, there exists C(r) > 0 such that for all $x, y \in \overline{U}$, $s, t \in [-r, r]$

$$|f(x,s) - f(y,t)| \le C(|x-y|^{\gamma} + |s-t|).$$
 (19)

Assume there exists a subsolution \underline{u} and a supersolution \overline{u} , both $C^{0,\gamma}$, such that $\underline{u} \leq \overline{u}$. Then there exist at least one solution u with $\underline{u} \leq u \leq \overline{u}$. Moreover, there is a minimal and a maximal one.

Theorem

Let U of class $C^{2,\gamma}$, L elliptic operator with coefficients of class $C^{0,\gamma}$ and $f: \overline{U} \times \mathbb{R} \to \mathbb{R}$ satisfying:

For any r > 0, there exists C(r) > 0 such that for all $x, y \in \overline{U}$, $s, t \in [-r, r]$

$$|f(x,s) - f(y,t)| \le C(|x-y|^{\gamma} + |s-t|).$$
 (19)

Assume there exists a subsolution \underline{u} and a supersolution \overline{u} , both $C^{0,\gamma}$, such that $\underline{u} \leq \overline{u}$. Then there exist at least one solution u with $\underline{u} \leq u \leq \overline{u}$. Moreover, there is a minimal and a maximal one.

Can generalize to Sobolev spaces. Then f(x, s) has Carathéodory conditions:

$$\left\{ egin{array}{l} x
ightarrow f(x,s) ext{ is measurable in } x, ext{ for all } s \in \mathbb{R}, \ s
ightarrow f(x,s) ext{ is continuous in } s, ext{ for a.e. } x \in U. \end{array}
ight.$$

(20)

Proof.

Consider sequences of functions (v_n) and (w_n) , solutions for $L - C + f(x, \cdot) + Cs$ and satisfying:

$$-r \leq \underline{u} = v_0 \leq v_1 \leq \ldots \leq v_n \leq \ldots \leq w_n \leq \ldots \leq w_1 \leq w_0 = \overline{u} \leq r.$$
(21)

- 4 同 6 4 日 6 4 日 6

Proof.

Consider sequences of functions (v_n) and (w_n) , solutions for $L - C + f(x, \cdot) + Cs$ and satisfying:

$$-r \leq \underline{u} = v_0 \leq v_1 \leq \ldots \leq v_n \leq \ldots \leq w_n \leq \ldots \leq w_1 \leq w_0 = \overline{u} \leq r.$$

 (v_n) and (w_n) converge to solutions $v, w \in C^{2,\gamma}$

くほと くほと くほと

(21)

Proof.

Consider sequences of functions (v_n) and (w_n) , solutions for $L - C + f(x, \cdot) + Cs$ and satisfying:

$$-r \leq \underline{u} = v_0 \leq v_1 \leq \ldots \leq v_n \leq \ldots \leq w_n \leq \ldots \leq w_1 \leq w_0 = \overline{u} \leq r.$$

 (v_n) and (w_n) converge to solutions $v, w \in C^{2,\gamma}$ If $u \in C^2$ is solution with $u < u < \overline{u}$, then v < u < w.

★聞▶ ★ 国▶ ★ 国▶

(21)

Solutions in Time

What happens if we start with some sub-/supersolution?

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Solutions in Time

What happens if we start with some sub-/supersolution?

- If subsolution <u>u</u> blows up, then solution u blows up;
- If subsolution <u>u</u> blows up in finite time, then solution <u>u</u> blows up in finite time;
- If \overline{u} is global (in time) supersolution above u, then u global.

Outlook

Progression

Differential Operators

2 The Maximum Principle

- The Weak Maximum Principle
- The Strong Maximum Principle
- Application to Boundary-Value Problems

3 Eigenvalues and Solutions

- Principal Eigenvalue
- Sub- and Supersolutions

Further reading

Evans, Lawrence C. Partial Differential Equations American Mathematical Society, 2nd edition, 2010.

Berestycki, Henri and Hamel, François *Chapter 1: The Maximum Principle* Yet unpublished.

• Next time: more dynamics

Further reading

Evans, Lawrence C. Partial Differential Equations American Mathematical Society, 2nd edition, 2010.

Berestycki, Henri and Hamel, François *Chapter 1: The Maximum Principle* Yet unpublished.

Next time: more dynamics

To be continued