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Motivation

Problem

Asymptotic behavior as t →∞ of solutions u(x , t) of the bistable
nonlinear diffusion equation

ut − uxx − f (u) = 0, x ∈ R, t ∈ R+,

u(x , 0) = ϕ(x)
(1)

where
f (0) = f (1) = 0, f ′(0) < 0, f ′(1) < 0. (2)

Moreover, f ∈ C 1 and has only one zero for u = α ∈ (0, 1).

Α 1
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Motivation

Simple Examples

Example

1 Fisher’s equation: f (u) = u(1− u)
to describe the spreading of biological populations. (not f ′(0) < 0)

2 Newell-Whitehead-Segel equation: f (u) = u(1− u2)

3 Zeldovich equation: f (u) = u(1− u)(u − α) and 0 < α < 1
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Example

1 Fisher’s equation: f (u) = u(1− u)

2 Newell-Whitehead-Segel equation: f (u) = u(1− u2)
to describe Rayleigh-Benard convection. (not f ′(0) < 0)

3 Zeldovich equation: f (u) = u(1− u)(u − α) and 0 < α < 1

0 1

Dirk van Kekem Convergence to Travelling Front Solutions May 23, 2012 5 / 26



Motivation

Simple Examples

Example

1 Fisher’s equation: f (u) = u(1− u)

2 Newell-Whitehead-Segel equation: f (u) = u(1− u2)

3 Zeldovich equation: f (u) = u(1− u)(u − α) and 0 < α < 1
that arises in combustion theory.
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Motivation

Result (Uniqueness of Solution)

If ϕ piecewise continuous and 0 ≤ ϕ(x) ≤ 1, then there exists one and
only one bounded classical solution u(x , t) of

ut − uxx − f (u) = 0, x ∈ R, t ∈ R+,

u(x , 0) = ϕ(x),
(3)

with 0 ≤ u(x , t) ≤ 1 for all x , t.

Fix these conditions on ϕ, f , so that we are concerned only with this
unique bounded solution.
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Travelling Fronts

Travelling Fronts

Definition (Travelling Front)

A travelling front is a solution U of

ut − uxx − f (u) = 0, x ∈ R, t ∈ R+,

u(x , 0) = ϕ(x)
(4)

of the form
u(x , t) = U(x − ct) = U(ξ), (5)

with U(−∞) = 0,U(∞) = 1.

c is speed with opposite sign as
∫ 1
0 f (u)du.

Limits of U when x →∞ should exist and be unequal.
Connects the homogeneous states.
These solutions move with constant speed without changing their shape.
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Travelling Fronts

Let U be a travelling front. Then P := dU
dξ satisfies

P ′ +
f

P
= −c

P(0) = P(1) = 0,
(6)

Lemma

Let α be small, and let P1(U),P2(U) be solutions of (6) with
corresponding speed c1, c2. Assume P1(U),P2(U) > 0 for U ∈ (0,U0] we
have

P1(U) ≤ P2(U) if c1 ≤ c2. (7)

Moreover, with our conditions on f , there exists at most one solution
which is positive in (0, 1).
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Travelling Fronts

Uniqueness

Theorem

Suppose for α ∈ (0, 1) that one of the following holds:

(a) f ≤ 0 in (0, α), f > 0 in (α, 1),
∫ 1
0 f (u)du > 0;

(b) f < 0 in (0, α), f ≥ 0 in (α, 1),
∫ 1
0 f (u)du < 0;

(c) f < 0 in (0, α), f > 0 in (α, 1).

Then there is a unique solution of (6) which is positive in (0, 1).

Note: we can reconstruct U from a solution P by integrating:
U ′(ξ) = P(U),U(0) = 1

2 .
Can have different types of convergence. Will concentrate only on two
possibilities:

1 Convergence to travelling wave front with only one zero-point α

2 Starting with a function which has sufficiently large part above α.
This yields two diverging travelling fronts.
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Uniform Convergence to a Front

Uniform Convergence

Theorem

Let, as before, f (u) < 0 for 0 < u < α; f (u) > 0 for α < u < 1.
Let U be a travelling front solution with speed c and suppose

lim sup
x→−∞

ϕ(x) < α, lim inf
x→∞

ϕ(x) > α, (8)

then solution u(x , t) of (1) satisfies

|u(x , t)− U(x − ct − ξ0)| < Ke−ωt , (9)

for some constants K , ω > 0 and ξ0.
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Uniform Convergence to a Front

Proof of Uniform Convergence

Lemma

There exists constants ξ1, ξ2 and q0, µ ≥ 0 such that

U(ξ − ξ1)− q0e−µt ≤ v(ξ, t) ≤ U(ξ − ξ2) + q0e−µt . (10)
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Uniform Convergence to a Front

Proof.

Define v(ξ, t) = u(x , t), ξ = x − ct; satisfies:

vt − vξξ − cvξ − f (v) = 0, ξ ∈ R, t ∈ R+,

v(ξ, 0) = ϕ(ξ).
(11)

Construct subsolution v(ξ, t) := max(0,U(ξ − z(t))− q(t)), for suitably
chosen q(t) ≥ 0 and z(t).
If v > 0 then for q(t) = q0e−µt and with a clever choice of z(t), ξ1, ξ2 this
results in

v t − v ξξ − cv ξ − f (v) ≤ 0.

Hence,

U(ξ − ξ1)− q0e−µt = U(ξ − ξ1)− q(t) ≤ v(ξ, t) ≤ v(ξ, t). (12)
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Uniform Convergence to a Front

Can take q0 = O(ε) such that |v(ξ, t)− U(ξ − ξ0)| < ω(ε), for a constant
ξ0 and a function ω.

Moreover, we can estimate for ±z < 0:

|1±v(ξ, t)|, |vξ(ξ, t)|, |vξξ(ξ, t)|, |vt(ξ, t)| < C
(

e(− c
2±σ)z + e−µt

)
,

(13)

for positive constants σ > |c|
2 ,C , µ.
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Uniform Convergence to a Front

Lemma

There exists a value ξ0 such that

lim
t→∞

|v(ξ, t)− U(ξ − ξ0)| = 0. (14)

Proof.

Let ε > 0 satisfy |c|ε < 2µ. Define truncated function w by

w(ξ, t) =


0 for z ≤ −εt − 1,

v(ξ, t) for |z | ≤ εt,

1 for z ≥ εt + 1,

(15)

with a smooth connection between the different parts.
Then w can be used to find a limit function ṽ(ξ) = limn w(·, t ′n), which
satisfies ṽξξ + cṽξ + f (ṽ) = 0.
Moreover, ṽ(−∞) = 0, ṽ(∞) = 1, so by uniqueness of travelling fronts,
ṽ(ξ) = U(ξ − ξ0) for some ξ0.
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Uniform Convergence to a Front

Proof of Exponential Rate

Define
h(ξ, t) := w(ξ, t)− U(ξ − ξ0 − α(t)),

where α(t) is chosen so that h is orthogonal to ecξ for large t. Existence
of α follows from the Implicit Function Theorem.

The estimates

|h(ξ, t)|, |α(t)| < Ce−νt , ν > 0

imply that w converges exponentially to U(ξ − ξ0).
From (13) and the definition of w it follows that

|v(ξ, t)− w(ξ, t)| < Ce−ν̃t .

Hence, v(ξ, t) converges exponentially to U(ξ − ξ0).

�
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Diverging Fronts
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2 Travelling Fronts

3 Uniform Convergence to a Front

4 Diverging Fronts

5 Conclusions

Dirk van Kekem Convergence to Travelling Front Solutions May 23, 2012 18 / 26



Diverging Fronts

Simple Example

If 0 ≤ ϕ(x) < α for all x , then

lim
t→∞

u(x , t) = 0. (16)

Let ϕ(x) ≤ α− δ < α, then u is bounded by the supersolution u(t)
defined by {

u(t) = f ′(u),

u(0) = α− δ,
(17)

and the subsolution u(t) of the same equation, with u(0) = inf ϕ(x).
Obviously, u, u → 0 as t →∞.
Similarly, if α < ϕ(x) ≤ 1 for all x , then

lim
t→∞

u(x , t) = 1. (18)
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Diverging Fronts

Statement

Theorem

Let f as before, with
∫ 1
0 f (u)du > 0. Let ϕ satisfy

lim sup
|x |→∞

ϕ(x) < α ϕ(x) > α + η for |x | < L, (19)

where η, L > 0.
If L(η, f ) large enough, then solution u(x , t) of (1) satisfies

|u(x , t)− U(x − ct − ξ0)| < Ke−ωt , x < 0,

|u(x , t)− U(−x − ct − ξ1)| < Ke−ωt , x > 0,
(20)

for some constants K , ω > 0 and ξ0, ξ1.
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Diverging Fronts

Situation

Η
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Diverging Fronts

Proof of the Theorem

Lemma

There exist constants q0, µ > 0 and ξ1, ξ2, such that

U(x − ct − ξ1)+U(−x − ct − ξ1)− 1− q0e−µt ≤ u(x , t)

≤U(x − ct − ξ2) + U(−x − ct − ξ2)− 1 + q0e−µt .
(21)

Lemma

There exist functions ω(ε),T (ε), defined for small ε > 0 and with
limε↓0 ω(ε) = 0, such that if

|u(x , t0)− U(x − ct0 − x0)| < ε, (22)

for some t0 > T (ε), some x0 and all x < 0, then

|u(x , t)− U(x − ct − x0)| < ω(ε), (23)

for all t > t0, x < 0.
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Diverging Fronts

Proof of the Theorem (continued)

Define the left truncated function by

ul(x , t) =

{
u(x , t) x < 0,

1− ζ(x)(1− u(x , t)) x ≥ 0,
(24)

with ζ(x) ∈ C∞(R), ζ(x) ≡ 1 for x ≤ 0 and ζ(x) ≡ 0 for x ≥ 1.

Moreover, vl(ξ, t) = ul(x , t) = ul(ξ + ct, t).
The rest of the proof follows by slightly modifying the proofs of the
lemma’s in the uniform convergence case.

�
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u(x , t) x < 0,

1− ζ(x)(1− u(x , t)) x ≥ 0,
(24)

with ζ(x) ∈ C∞(R), ζ(x) ≡ 1 for x ≤ 0 and ζ(x) ≡ 0 for x ≥ 1.
Moreover, vl(ξ, t) = ul(x , t) = ul(ξ + ct, t).

The rest of the proof follows by slightly modifying the proofs of the
lemma’s in the uniform convergence case.

�

Dirk van Kekem Convergence to Travelling Front Solutions May 23, 2012 23 / 26



Diverging Fronts

Proof of the Theorem (continued)

Define the left truncated function by

ul(x , t) =

{
u(x , t) x < 0,

1− ζ(x)(1− u(x , t)) x ≥ 0,
(24)

with ζ(x) ∈ C∞(R), ζ(x) ≡ 1 for x ≤ 0 and ζ(x) ≡ 0 for x ≥ 1.
Moreover, vl(ξ, t) = ul(x , t) = ul(ξ + ct, t).
The rest of the proof follows by slightly modifying the proofs of the
lemma’s in the uniform convergence case.

�

Dirk van Kekem Convergence to Travelling Front Solutions May 23, 2012 23 / 26



Conclusions

Progression

1 Motivation

2 Travelling Fronts

3 Uniform Convergence to a Front

4 Diverging Fronts

5 Conclusions

Dirk van Kekem Convergence to Travelling Front Solutions May 23, 2012 24 / 26



Conclusions

Conclusion

We have the following:
Consider f with only three zeroes, at x = 0, α, 1,

1 If ϕ(x) < α or ϕ(x) > α for all x , then u(x , t) converges to 0 or 1,
resp.

2 If ϕ(x) is below α for x → −∞ and above α for x →∞, then the
solution u(x , t) converges uniformly to a travelling front solution
U(x − ct).

3 If ϕ(x) is bigger than α on a bounded interval |x | < L, then u(x , t)
converges to a pair of fronts, moving in opposite directions.

From the last statement, we see that u(x , t) takes in the end on a large,
but finite, interval the value 0 or 1.
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Conclusions

Further Reading

Other possibilities under slightly different conditions:

Fife, Paul C. and McLeod, J.B.
The Approach of Solutions of Nonlinear Diffusion Equations to
Travelling Front Solutions Arch. Rational Mech. Anal. 65, 1977.

Fife, Paul C.
Long Time Behavior of Solutions of Bistable Nonlinear Diffusion
Equations 1978.

Fife, Paul C. and McLeod, J.B.
A Phase Plane Discussion of Convergence to Travelling Front
Solutions for Nonlinear Diffusion Arch. Rational Mech. Anal. 75, 1981.

Thank you for your attention!
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