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Problem

Asymptotic behavior as t — oo of solutions u(x, t) of the bistable
nonlinear diffusion equation

ui.“_uxx_f_(u):O7 XER,t€R+,
u(x,0) = ¢(x)
where
f(0) = (1) =0, f/(0) < 0, /(1) < 0. (2)
Moreover, f € C' and has only one zero for u = a € (0,1).

\
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Simple Examples

Q Fisher's equation: f(u) = u(1 — u)

to describe the spreading of biological populations. (not f/(0) < 0)
Q Newell-Whitehead-Segel equation: f(u) = u(l — u?)
Q Zeldovich equation: f(u) =u(l —u)(u—a)and 0 < a <1

0 1
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Simple Examples

Q Fisher’s equation: f(u) = u(1 — u)
Q Newell-Whitehead-Segel equation: f(u) = u(l — u?)
to describe Rayleigh-Benard convection. (not /(0) < 0)

Q Zeldovich equation: f(u) =u(l —u)(u—a)and 0 < a <1
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Simple Examples

Q Fisher’s equation: f(u) = u(1 — u)

O Newell-Whitehead-Segel equation: f(u) = u(l — u?)

@ Zeldovich equation: f(u) =u(l —u)(u—a)and0<a<1
that arises in combustion theory.
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Result (Uniqueness of Solution)

If ¢ piecewise continuous and 0 < ¢(x) < 1, then there exists one and

only one bounded classical solution u(x, t) of

Ur — Uy — f(u) =0, x€eR, teRy,
”(X’O) = SO(X)v

with 0 < u(x, t) <1 for all x, t.
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Result (Uniqueness of Solution)

If ¢ piecewise continuous and 0 < ¢(x) < 1, then there exists one and

only one bounded classical solution u(x, t) of

Ur — Uy — f(u) =0, x€eR, teRy,
”(X’O) = SO(X)v

with 0 < u(x, t) <1 for all x, t.

Fix these conditions on ¢, f, so that we are concerned only with this
unique bounded solution.
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Progression

@ Travelling Fronts
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Travelling Fronts

Definition (Travelling Front)

A travelling front is a solution U of
ur — Uy — f(u) =0, x€eR, teRy,
u(x,0) = ¢(x)

of the form
u(x,t) = U(x — ct) = U(¢), (5)

with U(—o0) =0, U(0) = 1.
c is speed with opposite sign as fol f(u)du.
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Travelling Fronts

Definition (Travelling Front)

A travelling front is a solution U of

ur — Uy — f(u) =0, x€eR, teRy,
u(x,0) = 9(x) &
of the form
u(x,t) = U(x — ct) = U(¢), (5)

with U(—o0) =0, U(0) = 1.
c is speed with opposite sign as fol f(u)du.

Limits of U when x — oo should exist and be unequal.
Connects the homogeneous states.
These solutions move with constant speed without changing their shape.
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Travelling Fronts

Let U be a travelling front. Then P := % satisfies

P’—i—%:—c

P(0) = P(1) =0,
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Travelling Fronts

Let U be a travelling front. Then P := % satisfies

f'
P+ —=—
+P c (6)

P(0) = P(1) =0,

Lemma

Let o be small, and let P1(U), P2(U) be solutions of (6) with
corresponding speed ci, ¢a. Assume Pi(U), P2(U) > 0 for U € (0, Up] we
have

Pl(U) S P2(U) if 1 S Co. (7)

Moreover, with our conditions on f, there exists at most one solution
which is positive in (0, 1).
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Uniqueness

Suppose for a € (0, 1) that one of the following holds:

(a) £<0in(0,a), f>0in al)fof(udu>0
(b) f<0in(0,c), f>0in( al)fof(udu<0
(c) f<0in(0,a), f>01in(c1).

Then there is a unique solution of (6) which is positive in (0, 1).
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Uniqueness

Suppose for a € (0,1) that one of the following holds:

(a) £<0in(0,a), f>0in( al)fof(udu>0
(b) f<0in(0,c), f>0in( al)fof(udu<0
(c) f<0in(0,a), f>01in(c1).

Then there is a unique solution of (6) which is positive in (0, 1).

Note: we can reconstruct U from a solution P by integrating:
U'(€) = P(U), U(0) = 5
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Uniqueness

Theorem

Suppose for a € (0, 1) that one of the following holds:

(a) F<0in(0,c), f>0in( al)fo u)du > 0;
(b) f<0in(0,c), f>0in( al)fof(udu<0
(c) f<0in(0,a), f>0in(a,1).

Then there is a unique solution of (6) which is positive in (0, 1).

Note: we can reconstruct U from a solution P by integrating:
U'(§) = P(U), U(0) = 3.
Can have different types of convergence. Will concentrate only on two
possibilities:
@ Convergence to travelling wave front with only one zero-point «
@ Starting with a function which has sufficiently large part above «.

This yields two diverging travelling fronts.
Convergence to Travelling Front Solutions May 23, 2012 10 / 26



Progression

© Uniform Convergence to a Front
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Uniform Convergence

Let, as before, f(u) <0 for 0 < u < o f(u) >0 fora<u<1.
Let U be a travelling front solution with speed ¢ and suppose

limsup ¢(x) < «, liminf o(x) > «, (8)

X——00 H=e2
then solution u(x, t) of (1) satisfies

lu(x, t) — U(x — ct — &)| < Ke™*t, (9)

for some constants K,w > 0 and &j.
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Proof of Uniform Convergence

There exists constants &1, & and qgg, 4 > 0 such that

U(E — &) — qoe ™™ < v(&,t) < U(E — &) + qoe ™. (10)
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Uniform Convergence to a Front

Define v(&, t) = u(x, t),£ = x — ct; satisfies:

Vi — Vge — cvg — f(v) =0, EeR,t € Ry,

V(€,0) = p(E). (D
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Uniform Convergence to a Front

Define v(&, t) = u(x, t),£ = x — ct; satisfies:
Vi — Vge — cvg — f(v) =0, EeR,t € Ry,
v(€,0) = ¢(§).

Construct subsolution v(&, t) := max(0, U(¢ — z(t)) — q(t)), for suitably
chosen g(t) > 0 and z(t).

(11)
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Uniform Convergence to a Front

Define v(&, t) = u(x, t),£ = x — ct; satisfies:

Vi — Vge — cvg — f(v) =0, EeR,t € Ry,
v(£,0) = ©(§).

Construct subsolution v(&, t) := max(0, U(¢ — z(t)) — q(t)), for suitably
chosen g(t) > 0 and z(t).

If v > 0 then for g(t) = goe ' and with a clever choice of z(t), {1, & this
results in

(11)

Vy— Ve —cve — f(v) <O0.
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Uniform Convergence to a Front

Define v(&, t) = u(x, t),£ = x — ct; satisfies:

Vi — Vge — cvg — f(v) =0, EeR,t € Ry,
v(£,0) = ©(§).

Construct subsolution v(&, t) := max(0, U(¢ — z(t)) — q(t)), for suitably
chosen g(t) > 0 and z(t).

If v > 0 then for g(t) = goe ' and with a clever choice of z(t), {1, & this
results in

(11)

Vy— Ve —cve — f(v) <O0.

Hence,

U(€— &) —qoe ™" = U(§ — &) — q(t) < v(& 1) < v(& 1) (12)

Ol

v
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Uniform Convergence to a Front

Can take qo = O(e) such that |v(&, t) — U(§ — &)| < w(e), for a constant
&o and a function w.
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Uniform Convergence to a Front

Can take qo = O(e) such that |v(&, t) — U(§ — &)| < w(e), for a constant
&o and a function w.
Moreover, we can estimate for +z < 0:

L&Dl (€D Tvee(6 0l v )] < € (25 et
(13)

for positive constants o > %, C, u.
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Uniform Convergence to a Front

There exists a value & such that

Jim [u(&.£) — U(E ~ &)| = 0. (14)
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Uniform Convergence to a Front

There exists a value &y such that

Jim u(&,1) — U(E — &) = 0. (14)

v

Let e > 0 satisfy |c|e < 2u. Define truncated function w by

0 for z < —et — 1,
w(§, t) =1 v(E,t) for |z] < et, (15)
1forz>et+1,

with a smooth connection between the different parts.

v
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Uniform Convergence to a Front

There exists a value &y such that

Jim u(&,1) — U(E — &) = 0. (14)

v

Let e > 0 satisfy |c|e < 2u. Define truncated function w by

0 for z < —et — 1,
w(§, t) =1 v(E,t) for |z] < et, (15)
1forz>et+1,
with a smooth connection between the different parts.

Then w can be used to find a limit function V(&) = lim, w(-, t},), which
satisfies vee + cve + f(v) = 0.

v
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Uniform Convergence to a Front

There exists a value &y such that

Jim u(&,1) — U(E — &) = 0. (14)

Proof.
Let e > 0 satisfy |c|e < 2u. Define truncated function w by

| A

0 for z < —et — 1,
w(§, t) =1 v(E,t) for |z] < et, (15)
1forz>et+1,

with a smooth connection between the different parts.

Then w can be used to find a limit function V(&) = lim, w(-, t},), which
satisfies vee + cve + f(v) = 0.

Moreover, v(—o0) = 0,v(co) = 1, so by uniqueness of travelling fronts,
v(&) = U(& — &) for some &p. D)
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Proof of Exponential Rate

Define
h(§7 t) = W(ﬁ, t) - U(£ - 60 - Oz(t)),

where a(t) is chosen so that h is orthogonal to e¢ for large t. Existence
of « follows from the Implicit Function Theorem.
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Proof of Exponential Rate

Define
h(§7 t) = W(§7 t) - U(£ - fO - Oz(t)),

where a(t) is chosen so that h is orthogonal to e¢ for large t. Existence
of « follows from the Implicit Function Theorem.
The estimates

(e D), Ja(t)] < Ce™t, v>0

imply that w converges exponentially to U(¢ — &).
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Proof of Exponential Rate

Define
h(§7 t) = W(§7 t) - U(£ - 50 - Oz(t)),

where a(t) is chosen so that h is orthogonal to e¢ for large t. Existence
of « follows from the Implicit Function Theorem.
The estimates

|h(&, )], |a(t)] < Ce™F, v>0

imply that w converges exponentially to U(¢ — &).
From (13) and the definition of w it follows that

V(€ £) — wl&, 1)] < Ce
Hence, v(§, t) converges exponentially to U(§ — &o).

O

Dirk van Kekem Convergence to Travelling Front Solutions May 23, 2012 17 / 26



Progression

@ Diverging Fronts
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Simple Example

If 0 < p(x) < « for all x, then

tIer;O u(x, t) =0.
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Simple Example

If 0 < p(x) < « for all x, then

lim u(x,t) =0. (16)

t—o0
Let ¢(x) < a— 0 < «, then u is bounded by the supersolution u(t)
defined by
u(t)y=f'(u
a(t) = 7'(a). -
u(0) =a—9,

and the subsolution u(t) of the same equation, with u(0) = inf p(x).
Obviously, u,u — 0 as t — oc.
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Simple Example

If 0 < p(x) < « for all x, then

lim u(x,t) =0. (16)

t—o0
Let ¢(x) < a— 0 < «, then u is bounded by the supersolution u(t)
defined by
u(t)y=f'(u
a(t) = 7'(a). -
u(0) =a—9,

and the subsolution u(t) of the same equation, with u(0) = inf p(x).
Obviously, u,u — 0 as t — oc.
Similarly, if & < (x) <1 for all x, then

tILrgo u(x,t) =1 (18)
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Statement

Let f as before, with fol f(u)du > 0. Let @ satisfy

limsup p(x) < « o(x) > a+n for x| < L, (19)
[x|—00
where n, L > 0.
If L(n, f) large enough, then solution u(x, t) of (1) satisfies
lu(x,t) — U(x — ct — &)| < Ke ™", x <0, (20)
lu(x,t) — U(—x — ct — &1)| < Ke ™", x>0,

for some constants K,w > 0 and &g, &3.
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Situation

4

0
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Proof of the Theorem

There exist constants qo, 1+ > 0 and &3, &2, such that

U(x — ct — &)+ U(—x —ct — &) — 1 — qoe ™ < u(x, t)

<U(x —ct — &)+ U(—x — ct — &) — 1 + goe M. (21)
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Proof of the Theorem

Lemma

There exist constants qo, 1+ > 0 and &3, &2, such that

U(x — et = &)+U(—x — ct — &) — 1 — qoe ™ < u(x, t)

<U(x —ct — &)+ U(—x — ct — &) — 1 + goe M. (21)

v

Lemma

There exist functions w(e), T (), defined for small € > 0 and with
limejow(e) =0, such that if

lu(x, to) — U(x — cto — x0)| < &, (22)
for some tg > T(c), some xp and all x < 0, then

lu(x, t) — U(x — ct — x0)| < w(e), (23)

for all t > tg,x < 0.
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Proof of the Theorem (continued)

Define the left truncated function by

u(x,t) x <0,

u(x, t) = { 1— C(x)(l _ u(x, t)) x>0,

with ((x) € C*(R),((x) =1 for x <0 and {(x) =0 for x > 1.
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Proof of the Theorem (continued)

Define the left truncated function by

u(x,t) x <0,

u(x, t) = { 1— g‘(x)(l _ u(x, t)) x>0,

with ((x) € C*(R),((x) =1 for x <0 and {(x) =0 for x > 1.
Moreover, vi(&, t) = uj(x, t) = u(§ + ct, t).
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Proof of the Theorem (continued)

Define the left truncated function by

u(x,t x < 0,
(. t) = o) (24)
1—¢(x)(1 — u(x,t)) x>0,
with ((x) € C*(R),((x) =1 for x <0 and {(x) =0 for x > 1.
Moreover, vi(&, t) = uj(x, t) = u(§ + ct, t).
The rest of the proof follows by slightly modifying the proofs of the
lemma’s in the uniform convergence case.
O
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Progression

@ Conclusions
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Conclusion

We have the following:
Consider f with only three zeroes, at x =0, a, 1,
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We have the following:
Consider f with only three zeroes, at x =0, a, 1,

Q If p(x) < aor p(x) > « for all x, then u(x, t) converges to 0 or 1,
resp.
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Conclusion

We have the following:
Consider f with only three zeroes, at x =0, a, 1,

Q If p(x) < aor p(x) > « for all x, then u(x, t) converges to 0 or 1,
resp.

@ If ¢(x) is below a for x — —o0o and above a for x — oo, then the
solution u(x, t) converges uniformly to a travelling front solution

U(x — ct).
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Conclusion

We have the following:
Consider f with only three zeroes, at x =0, a, 1,
Q If p(x) < aor p(x) > « for all x, then u(x, t) converges to 0 or 1,
resp.
@ If ¢(x) is below a for x — —o0o and above a for x — oo, then the
solution u(x, t) converges uniformly to a travelling front solution
U(x — ct).
@ If p(x) is bigger than o on a bounded interval |x| < L, then u(x, t)
converges to a pair of fronts, moving in opposite directions.
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Conclusion

We have the following:
Consider f with only three zeroes, at x =0, a, 1,
Q If p(x) < aor p(x) > « for all x, then u(x, t) converges to 0 or 1,
resp.
@ If ¢(x) is below a for x — —o0o and above a for x — oo, then the
solution u(x, t) converges uniformly to a travelling front solution
U(x — ct).
@ If p(x) is bigger than o on a bounded interval |x| < L, then u(x, t)
converges to a pair of fronts, moving in opposite directions.
From the last statement, we see that u(x, t) takes in the end on a large,
but finite, interval the value 0 or 1.
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Further Reading

Other possibilities under slightly different conditions:

[3 Fife, Paul C. and McLeod, J.B.
The Approach of Solutions of Nonlinear Diffusion Equations to
Travelling Front Solutions

[§ Fife, Paul C.
Long Time Behavior of Solutions of Bistable Nonlinear Diffusion
Equations

[§ Fife, Paul C. and McLeod, J.B.
A Phase Plane Discussion of Convergence to Travelling Front
Solutions for Nonlinear Diffusion
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Other possibilities under slightly different conditions:

[3 Fife, Paul C. and McLeod, J.B.
The Approach of Solutions of Nonlinear Diffusion Equations to
Travelling Front Solutions

[§ Fife, Paul C.
Long Time Behavior of Solutions of Bistable Nonlinear Diffusion
Equations

[§ Fife, Paul C. and McLeod, J.B.
A Phase Plane Discussion of Convergence to Travelling Front
Solutions for Nonlinear Diffusion

Thank you for your attention! )
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