Model o ooo oo	Time Coarse Graining 00 0	Phase Plane Analysis 00 00000 0000

Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons

Gosse Overal

04-04-2012

▲ □ ▶ ▲ □ ▶ ▲

3 x 3

Gosse Overal

Introduction woder	
0 000 00	00 00000 0000

A (1) > (1) > (1)

문 문 문

Overview

1 Introduction

2 Model

- Refractory Period
- Response Functions
- Excitation
- 3 Time Coarse Graining
 - Motivation
 - Equations
- 4 Phase Plane Analysis
 - Isoclines
 - Saddle-node bifurcation
 - Theorem

Gosse Overal

Introduction	Model	Time Coarse Graining	Phase Plane Analysis
			00000
	00		0000

Context

Model Neurons

Populations Higher functions of neurons \Rightarrow Complex patterns that require shift of focus, from single cell to cell populations.

Excitatory When excited, will fire increasing excitation.

Inhibitory When excited, will fire decreasing excitation.

Localized Close spatial proximity, interconnections random \Rightarrow neglect spatial interactions.

A (1) > A (1) > A

э

0 00 00 000 0 00000 00 0000	Model	Time Coarse Graining	Phase Plane Analysis
	0 000 00		00 00000 0000

Variables

3

Gosse Overal

Model	Time Coarse Graining	Phase Plane Analysis
0 000 00		00 00000 0000

Equations

Discrete derivation: what happens at $t + \tau$, given E(t), I(t)?

$$E(t+\tau) = \left(1 - \int_{t-\tau}^{t} E(t') dt'\right)$$
$$\cdot S_e \left(\int_{-\infty}^{t} \alpha(t-t') \left(c_1 E(t') - c_2 I(t') + P(t')\right) dt'\right)$$
$$I(t+\tau') = \left(1 - \int_{t-\tau}^{t} I(t') dt'\right)$$
$$\cdot S_i \left(\int_{-\infty}^{t} \alpha(t-t') \left(c_3 E(t') - c_4 I(t') + Q(t')\right) dt'\right)$$

・ロン ・回 と ・ ヨ と ・

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
			00 00000 0000
Refractory Period			

Refractory Period

After firing, refractory period r, assumed constant.

 Sensitive proportion

 Refractory cells:

 $\int_{t-r}^{t} E(t') dt'$

 Hence sensitive cells:

$$\left(1-\int_{t-r}^{t}E(t')\mathrm{d}t'\right)$$

(ロ) (四) (三) (三)

э

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
	0 000 00		
Response Functions			

Response Functions

Given excitation x(t) at the instant t:

イロン 不同 とくほう イロン

Ξ.

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
	0 000 00		00 00000 0000
Response Functions			

Response Functions

Given excitation x(t) at the instant t:

S(x(t)) Proportion of sensitive cells that are excited at instant t

Excited cell A cell must receive at least threshold excitation

Example

 S_e and S_e

Assume x(t) is equal for all cells, $D(\theta)$ the threshold distribution function of the population. $S(x) = \int_0^{x(t)} D(\theta) d\theta$ 'All cells which have threshold θ , such that $\theta \le x(t)$, will start firing'

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
	000		00000
			0000
Response Functions			

・ロト ・回ト ・ヨト ・ヨト

2

Sigmoid functions

Definition

A function f(x) has sigmoid form if

1 f(x) is monotonically increasing on $(-\infty, \infty)$

2
$$\lim_{x\to-\infty} f(x) = 0$$
, $\lim_{x\to\infty} f(x) = 1$

3 f has only one inflection point.

Gosse Overal

Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons

Gosse Overal

0.2

	Model ○ ○○○ ●○	Time Coarse Graining 00 0	Phase Plane Analysis 00 00000 0000
Excitation			

New Excitation

New excitation at instant t'

E(t') = cells that start firing.

$$c_1 E(t') - c_2 I(t') + P(t')$$

- c1 average number excitatory synapses connected to excitatory cell
- c₂ average number inhibitory synapses connected to excitatory cell

<ロ> <同> <同> < 回> < 回>

э

P(t') External input to excitatory subpopulation

Gosse Overal

	Model ○ ○○ ○●	Time Coarse Graining 00 0	Phase Plane Analysis 00 00000 0000
Excitation			

・ロ・ ・四・ ・ヨ・ ・ ヨ・

E 990

Decay and Total

$\alpha(t)$, the synaptic response function

After excitation, the rate of firing decays, $\alpha(t)$ $\alpha(0) = 1$, $\alpha(t) \rightarrow 0$ as $t \rightarrow \infty$

Gosse Overal

	Model ○ ○○○ ○●	Time Coarse Graining 00 0	Phase Plane Analysis 00 00000 0000
Excitation			

Decay and Total

$\alpha(t)$, the synaptic response function

After excitation, the rate of firing decays, $\alpha(t)$ $\alpha(0) = 1$, $\alpha(t) \rightarrow 0$ as $t \rightarrow \infty$

Total excitation at instant t

$$\int_{-\infty}^{t} \alpha(t-t') \left(c_1 E(t') - c_2 I(t') + P(t') \right) \mathrm{d}t'$$

Gosse Overal

	Model 0 000 000	Time Coarse Graining ●○ ○	Phase Plane Analysis 00 00000 0000
Motivation			

Motivation

Clear physiological interpretation, Math. complexity

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - 釣�?

Gosse Overal

	Model 0 000 00	Time Coarse Graining ●0 ○	Phase Plane Analysis 00 00000 0000
Motivation			

Motivation

Clear physiological	
interpretation,	\rightarrow
Math. complexity	

New biological assumptions, Removal of temporal integrals (Phase Plane Analysis)

<ロ> <同> <同> < 回> < 回>

Ξ.

Gosse Overal

	Model o ooo oo	Time Coarse Graining ●○ ○	Phase Plane Analysis 00 00000 0000
Motivation			

Motivation

Clear physiological		New biological assumptions,
nterpretation,	\rightarrow	Removal of temporal integrals
Math. complexity		(Phase Plane Analysis)

"Replace by average over appropriate interval"

Definition

Replace f(t) by

$$\bar{f}(t) := \frac{1}{s} \int_{t-s}^{t} f(t') \mathrm{d}t'$$

<ロ> <同> <同> < 回> < 回>

= 990

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
		00	
			00000
	00		0000
Motivation			

Biological Assumptions

- Rapid behaviour which is lost is not significant for the problem at hand
- $\alpha(t) \sim 1$ for $0 \leq t \leq r$, $\alpha(t)$ drops fairly rapidly to 0 for t > r

Coarse Grained variables

$$\int_{t-r}^{t} E(t') dt' \to r\bar{E}(t)$$
$$\int_{-\infty}^{t} \alpha(t-t') E(t') dt' \to k\bar{E}(t)$$

<ロ> <同> <同> < 回> < 回>

Ξ.

Gosse Overal

	Model o ooo oo	Time Coarse Graining ○○ ●	Phase Plane Analysis 00 00000 0000
Equations			

Equations

Note: smoothing effect
$$\rightarrow$$
 use Taylor expansions.
 $E(t + \tau) \rightarrow \overline{E}(t) + \tau \frac{d\overline{E}}{dt} \qquad I(t + \tau') \rightarrow \overline{I}(t) + \tau' \frac{d\overline{I}}{dt}$

$$\tau \frac{\mathrm{d}\bar{E}}{\mathrm{d}t} = -\bar{E} + (1 - r\bar{E})S_e \left(kc_1\bar{E} - kc_2\bar{I} + kP\right)$$

$$\tau' \frac{\mathrm{d}\bar{I}}{\mathrm{d}t} = -\bar{I} + (1 - r\bar{I})S_i \left(k'c_3\bar{E} - k'c_4\bar{I} + k'Q\right)$$

・ロト ・四ト ・ヨト ・ヨト

= 990

Gosse Overal

Model	Time Coarse Graining	Phase Plane Analysis
000		00000

Transform, specify and clean up

Definition $\mathcal{S}(x(t)) := rac{1}{1 + \exp\left(-a(x(t) - \theta) ight)} - rac{1}{1 + \exp\left(a\theta\right)}$

Note: Maximum slope $S'(\theta) = \frac{a}{4}$ Total amount of cells has to be corrected.

Correct for transformation and rename variables and parameters

$$\tau_e \frac{\mathrm{d}E}{\mathrm{d}t} = -E + (k_e - r_e E) \mathcal{S}_e(c_1 E - c_2 I + P)$$

$$\tau_i \frac{\mathrm{d}I}{\mathrm{d}t} = -I + (k_i - r_i I) \mathcal{S}_i(c_3 E - c_4 I + Q)$$

Gosse Overal

	Model 0 000 00	Time Coarse Graining 00 0	Phase Plane Analysis ●0 ○○○○○ ○○○○
Isoclines			

Isoclines

$$\frac{\mathrm{d}E}{\mathrm{d}t} = 0 \ c_2 I = c_1 E - \mathcal{S}_e^{-1} \left(\frac{E}{k_e - r_e E}\right) + P$$
$$\frac{\mathrm{d}I}{\mathrm{d}t} = 0 \ c_3 E = c_4 I + \mathcal{S}_i^{-1} \left(\frac{I}{k_i - r_i I}\right) - Q$$

2

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
			00
			00000
	00		0000
Isoclines			

Note that:

$$S_e^{-1} : [k_e - 1, k_e] \to (\infty, \infty)$$
$$S_i^{-1} : [k_i - 1, k_i] \to (\infty, \infty)$$

 These functions are monotonically increasing with one inflection point.

・ロン ・四 と ・ ヨ と ・ ヨ と …

	Model o ooo oo	Time Coarse Graining 00 0	Phase Plane Analysis ⊙● ○○○○○ ○○○○
Isoclines			

Note that:

$$S_e^{-1}: [k_e - 1, k_e] \to (\infty, \infty)$$
$$S_i^{-1}: [k_i - 1, k_i] \to (\infty, \infty)$$

These functions are monotonically increasing with one inflection point.

So we conclude

- I-isocline: E as a monotonically increasing function of I
- E-isocline: I as a generally decreasing function of I, except over a short range where it may temporarily increase.

- 4 同 6 4 日 6 4 日 6

3

	Model	Time Coarse Graining	Phase Plane Analysis
	000		00000
	00		0000
Saddle-node bifurcation			

c₁ large

Gosse Overal

	Model o ooo oo	Time Coarse Graining 00 0	Phase Plane Analysis ○○ ○●○○○ ○○○○
Saddle-node bifurcation			

c_1 at bifurcation

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
	000		00000
Saddle-node bifurcation			

c_1 small

Gosse Overal

	Model o ooo oo	Time Coarse Graining 00 0	Phase Plane Analysis ○○ ○○○●○ ○○○○
Saddle-node bifurcation			

・ロト ・四ト ・ヨト ・ヨト

= 900

When do we have a kink in $\frac{dE}{dt} = 0$?

Gosse Overal

	Model o ooo oo	Time Coarse Graining 00 0	Phase Plane Analysis ○○ ○○○○ ○○○○
Saddle-node bifurcation			

When do we have a kink in $\frac{dE}{dt} = 0$?

- No kink \Rightarrow only trivial solution.
- We have a kink \Leftrightarrow The maximum slope of the *E*-isocline (*I* as function of *E*) is greater that 0.

(日) (同) (三) (三)

2

	Model 0 000 000	Time Coarse Graining 00 0	Phase Plane Analysis ○○ ○○○○ ○○○○
Saddle-node bifurcation			

When do we have a kink in $\frac{dE}{dt} = 0$?

- No kink \Rightarrow only trivial solution.
- We have a kink ⇔ The maximum slope of the E-isocline (I as function of E) is greater that 0.

Tedious to compute, consider the slope of the E-isocline at the inflection point of \mathcal{S}_e^{-1} :This slope is

$$\left(\frac{c_1}{c_2}-\frac{9}{a_ec_2}\right)$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

3

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
	0000		00
			0000 ×
Theorem			

Theorem

If $c_1 > \frac{9}{a_e}$, then there is a class of constant values P and Q such that there are three equilibria.

・ロト ・回ト ・ヨト ・ヨト

Ξ.

	Model	Time Coarse Graining	Phase Plane Analysis
	000		00000
			0000
Theorem			

Theorem

If $c_1 > \frac{9}{a_e}$, then there is a class of constant values P and Q such that there are three equilibria.

Proof.

- Sufficient condition for kink.
- *I*-isocline approaches vertical line as asymptote.
- Transforming along the axes using P and Q can transform the I-isocline to just the right position.

(人間) システン イラン

3

	Model	Time Coarse Graining	Phase Plane Analysis
		00	00
	00		0000
Theorem			

Recall: small c_1

= 900

Gosse Overal

	Model 0 000 00	Time Coarse Graining 00 0	Phase Plane Analysis ○○ ○○○○○ ○○○○○
Theorem			
Note:	Actually $c_1 < rac{9}{a_e}$. Zooming out yield	was satisfied (barely) ds:	
0.8	-	- / -	
0.6	-	-	
0.4		-	
0.2	t (-	
0		9 •••••	
-0.2	-	-	
-0.4	-	-	
-0.6	-	-	
	-0.4 -0.2	0 0.2 0.4	
		< 🗆	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Gosse Overal

	Model	Time Coarse Graining	Phase Plane Analysis
	0		00
	000		00000
Theorem			

・ロン ・回 と ・ ヨン ・ ヨン …

= 990

Transforming the isoclines using P = 0.5, Q = -5, we get

Gosse Overal