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Context

Model Neurons

Populations Higher functions of neurons ⇒
Complex patterns that require shift of focus, from
single cell to cell populations.

Excitatory When excited, will fire increasing excitation.

Inhibitory When excited, will fire decreasing excitation.

Localized Close spatial proximity, interconnections random ⇒
neglect spatial interactions.
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Variables

E (t): Proportion of excitatory cells firing
per unit of time at the instant t

Continuous,
value in [0, 1].

I (t): Proportion of Inhibitory cells firing per
unit of time at the instant t

Continuous,
value in [0, 1].

t: Time

Continuous
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Equations

Discrete derivation: what happens at t + τ , given E (t), I (t)?

E (t + τ) =

(
1−

∫ t

t−r
E (t ′)dt ′

)
· Se

(∫ t

−∞
α(t − t ′)

(
c1E (t ′)− c2I (t

′) + P(t ′)
)
dt ′
)

I (t + τ ′) =

(
1−

∫ t

t−r
I (t ′)dt ′

)
· Si
(∫ t

−∞
α(t − t ′)

(
c3E (t ′)− c4I (t

′) + Q(t ′)
)
dt ′
)
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Refractory Period

Refractory Period

After firing, refractory period r , assumed constant.

Sensitive proportion

Refractory cells: ∫ t

t−r
E (t ′)dt ′

Hence sensitive cells: (
1−

∫ t

t−r
E (t ′)dt ′

)
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Response Functions

Response Functions

Given excitation x(t) at the instant t:

Se and Se
S(x(t)) Proportion of sensitive cells that are excited at

instant t

Excited cell A cell must receive at least threshold excitation

Example

Assume x(t) is equal for all cells, D(θ) the threshold distribution
function of the population.

S(x) =
∫ x(t)

0 D(θ)dθ
‘All cells which have threshold θ,
such that θ ≤ x(t), will start firing’
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Response Functions

Sigmoid functions

Definition

A function f (x) has sigmoid form if

1 f (x) is monotonically increasing on (−∞,∞)

2 limx→−∞ f (x) = 0, limx→∞ f (x) = 1

3 f has only one inflection point.
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Response Functions

Example

f (x) =
1

1 + e−a(x−θ)
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Excitation

New Excitation

New excitation at instant t ′

E (t ′) = cells that start firing.

c1E (t ′)− c2I (t
′) + P(t ′)

c1 average number excitatory synapses connected to
excitatory cell

c2 average number inhibitory synapses connected to
excitatory cell

P(t ′) External input to excitatory subpopulation
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Excitation

Decay and Total

α(t), the synaptic response function

After excitation, the rate of firing decays, α(t)
α(0) = 1, α(t)→ 0 as t →∞

Total excitation at instant t∫ t

−∞
α(t − t ′)

(
c1E (t ′)− c2I (t

′) + P(t ′)
)
dt ′
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Motivation

Motivation

Clear physiological

New biological assumptions,

interpretation,

→ Removal of temporal integrals

Math. complexity

(Phase Plane Analysis)

“Replace by average over appropriate interval”

Definition

Replace f (t) by

f̄ (t) :=
1

s

∫ t

t−s
f (t ′)dt ′
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Motivation

Biological Assumptions

Rapid behaviour which is lost is not significant for the
problem at hand

α(t) ∼ 1 for 0 ≤ t ≤ r , α(t) drops fairly rapidly to 0 for t > r

Coarse Grained variables

∫ t

t−r
E (t ′)dt ′ → r Ē (t)∫ t

−∞
α(t − t ′)E (t ′)dt ′ → kĒ (t)
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Equations

Equations

Note: smoothing effect → use Taylor expansions.

E (t + τ)→ Ē (t) + τ dĒ
dt I (t + τ ′)→ Ī (t) + τ ′ dĪdt

τ
dĒ

dt
= −Ē + (1− r Ē )Se

(
kc1Ē − kc2 Ī + kP

)
τ ′
dĪ

dt
= −Ī + (1− r Ī )Si

(
k ′c3Ē − k ′c4 Ī + k ′Q

)
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Transform, specify and clean up

Definition

S(x(t)) :=
1

1 + exp (−a(x(t)− θ))
− 1

1 + exp(aθ)

Note: Maximum slope S ′(θ) = a
4

Total amount of cells has to be corrected.

Correct for transformation and rename variables and parameters

τe
dE

dt
= −E + (ke − reE )Se(c1E − c2I + P)

τi
dI

dt
= −I + (ki − ri I )Si (c3E − c4I + Q)
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Isoclines

Isoclines

dE
dt = 0 c2I = c1E − S−1

e

(
E

ke−reE

)
+ P

dI
dt = 0 c3E = c4I + S−1

i

(
I

ki−ri I

)
− Q
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Isoclines

Note that:

S−1
e : [ke − 1, ke ]→ (∞,∞)

S−1
i : [ki − 1, ki ]→ (∞,∞)

These functions are monotonically increasing with one
inflection point.

So we conclude

I -isocline: E as a monotonically increasing function of I

E -isocline: I as a generally decreasing function of I ,
except over a short range where it may temporarily increase.
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Saddle-node bifurcation

c1 large
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Saddle-node bifurcation

c1 at bifurcation
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Saddle-node bifurcation

c1 small
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Saddle-node bifurcation

When do we have a kink in dE
dt = 0?
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Saddle-node bifurcation

When do we have a kink in dE
dt = 0?

No kink ⇒ only trivial solution.

We have a kink ⇔ The maximum slope of the E -isocline (I as
function of E ) is greater that 0.

Tedious to compute, consider the slope of the E -isocline at the
inflection point of S−1

e :This slope is(
c1

c2
− 9

aec2

)
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Theorem

Theorem

If c1 >
9
ae
, then there is a class of constant values P and Q such

that there are three equilibria.

Proof.

Sufficient condition for kink.

I -isocline approaches vertical line as asymptote.

Transforming along the axes using P and Q can transform the
I -isocline to just the right position.
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Theorem

Recall: small c1
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Theorem

Note: Actually c1 <
9
ae

was satisfied (barely)

Zooming out yields:
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Theorem

Transforming the isoclines using P = 0.5, Q = −5, we get
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