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The aim of this seminar talk is to show how semigroup theory can
be used to study evolution equations of the kind:

ẋ = Ax + N(x) , x(0) = x0 , x0 ∈ X
where X is a Banach space, A : D(A) ⊂ X → X is a linear
operator and N : X → X is (non-linear) and smooth.
In particular we are interested in reaction-diffusion systems of the
form: u̇ = D∆u + Cu + f (u)
on a bounded domain Ω ⊂ Rm(m ≤ 3) with Dirichlet or Neumann
conditions on its piecewise smooth boundary ∂Ω where
u = (u1, .., un)T ,D = diag(d1, .., dn) is a diagonal matrix,
C = (cij) and f = (f1, .., fn)T .
Semigroup theory is a way to see evolution equations of the form:
d
dt u(t) = R(u(t)) where R is an operator, as ODEs on a Banach
function space.
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Definitions

A semigroup is a set (S, ∗) with a binary operation ∗ which is
associative: ∀x , y , z ∈ S, (x ∗ y) ∗ z = x ∗ (y ∗ z)

We are interested in semigroups of bounded linear operators on a
Banach space X. A one-parameter family
T = T (t) = {T (t) | t ∈ R+} ,T (t) : X → X satisfying:

I T (0) = I
I T (t + s) = T (t)T (s), ∀t, s ∈ <+

I T (t)w → x as t → 0+, ∀x ∈ X

Is called a strongly continous semigroup or C0 semigroup.
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Definitions

If instead of the last condition we had:

I limt→0+ T (t) = I
then T is called uniformly continous
Moreover if:

I ‖T (t)‖ ≤ 1, ∀t ≥ 0, T is called semigroup of contractions
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Definition of semigroup generator

The infinitesimal generator C of the semigroup T (t) is defined as:

Cw = limt→0+
T (t)x−x

t
It is defined on its domain D(C) ⊆ X , the set where the limit
exists.
It is proven that D(C) is dense in X and C is a closed operator.
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Examples

I If X is the Banach space of bounded uniformly continous
functions on R+ with supremum norm.

Define (T (t)f )(θ) = f (θ + t), f ∈ X , θ ≥ 0, t ≥ 0 then T (t)
is a C0 semigroup with generator (Cf )(θ) = f ′(θ) with
domain D(C) ≡ {f ∈ X : f differentiable and f ′ ∈ X}

I If C is a bounded operator on a Banach space X then
T (t) = eCt =

∑∞
n=0

(Ct)n

n! is a C0 semigroup. Its generator is
C .
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Properties of C 0 semigroups

If T (t) is a C0 semigroup on X then:

I ∃ω ∈ R and M ≥ 1 such that ‖T (t)‖ ≤ Meωt ,∀t ≥ 0
I t 7→ T (t)x is continuous on [0,∞), ∀x ∈ X
I If C is the infinitesimal generator of T (t) then :

T (t)x ∈ D(C) and d
dt (T (t)x) = CT (t)x = T (t)Cx

∀x ∈ D(C), t ∈ R+
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Hille-Yoshida theorem

So the question is: given a (closed) operator C , is it the generator
of a C0 semigroup?

answer:
Theorem (Hille-Yoshida, contraction case):
A linear operator C on a Banach space X is the generator of a C0

semigroup of contractions on X ⇔
I C is closed and densely defined
I (0,∞) ⊂ ρ(C), the resolvent set of C , and
‖R(λ)‖ =

∥∥(λI − C)−1∥∥ ≤ λ−1,∀λ > 0
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We will need also the following:

Theorem:
Suppose f : Ω× Rn → R is smooth, where Ω ⊂ Rm is bounded
and ∂Ω is smooth and k > m

2 ⇒ F : s → f (·, s(·)) from
[Hk(Ω)]n → Hk(Ω) is well defined and smooth.
Here Hk(Ω) is the Sobolev space of (equivalence classes of)
functions u : Ω→ R that have weak derivatives up to and
including order k in L2(Ω) with the norm

|u|Ωk =

∫
Ω

∑
|α|≤k

|Dαu|2dx

 1
2
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Definition:
Let 0 < θ ≤ π

2 and ∆θ = {ξ ∈ C |ξ 6= 0, | arg ξ| < θ}.

A semigroup T (t) is said to be analytic of angle θ ∈ (0, π2 ] if
I T (0) = I and T (ξ1 + ξ2) = T (ξ1)T (ξ2) for all ξ1,2 ∈ ∆δ

I ξ 7→ T (ξ) is analytic in the sector ∆θ

I |T (ξ)x − x | → 0 as |ξ| → 0 in any closed subsector of
∆θ,∀x ∈ X
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More Definitions and theorems

Theorem:
Suppose A is a closed operator with dense domain such that:

I There exists δ ∈ (0, π2 ] such that the resolvent of A contains
the sector ∆ π

2 +δ

I For each ε ∈ (0, δ) there exists Mε > 1 such that
‖R(λ,A)‖ ≤ Mε/|λ| for all 0 6= λ ∈ ∆ π

2 +δ−ε

In this case A is called a sectorial operator of angle δ.
⇒ A generates a bounded analytic semigroup of angle δ.
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Definition:
A C0 semigroup of bounded linear operators T (t) is said to be
compact if T (t) is compact ∀t > 0

Theorem:
A C0 semigroup with generator C is compact ⇔

I t → T (t) is norm continous on (0,∞)
I R(λ,C) = (λI − C)−1 is compact for some λ ∈ ρ(C) (i.e.
∀λ ∈ ρ(C))

Theorem:
Suppose C is the generator of a C0 semigroup T (t) and A ∈ L(Z )
is a bounded operator ⇒ C + A generates a C0 semigroup S

I if T is analytic ⇒ S is analytic
I if T is compact ⇒ S is compact
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Laplace operator
Abstract evolution equation
Reaction-diffusion equations

Laplace operator

First we consider the Laplace operator:
∆u = ( ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
m

)u.
where u is a function on Ω, with u = 0 on ∂Ω. The Laplace
operator can be extended to a closed, self-adjoint operator
A : DA ⊂ L2(Ω)→ L2(Ω) with dense domain DA given by the
closure of the set:
C2

0 (Ω) =
{

u ∈ C2(Ω)|u = 0 on ∂Ω
}
in H2(Ω)

The space L2(Ω) is a Hilbert space and A is dissipative because for
u ∈ C2

0 (Ω) we have: < ∆u, u >≤ 0⇒< Au, u >≤ 0 for u ∈ DA.
Therefore A generates a contraction semigroup on L2(Ω).
Moreover the semigroup generated by A is also analytic and
compact.
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Laplace operator

The domain DA is a Banach space with the same norm of H2(Ω).
We define now Ã as the restriction of A to the subspace
DA2 = {u ∈ DA|Au ∈ DA} and T̃ (t) the restriction of T (t) to the
subspace DA of L2(Ω).

We do this because the substitution operator associated with the
non-linearity is smooth, hence the non-linear part is well defined
and smooth in DA.
In the case of Neumann boundary conditions the result is valid as
well and A defined as before still generates a contraction
semigroup.

Martino Pitruzzella Application of semigroup theory to reaction-diffusion equations



Aim of the talk, introduction and motivation
Summary of semigroup theory

How the theory is applied
Principle of linearized stability

Example:Turing instability on interval

Laplace operator
Abstract evolution equation
Reaction-diffusion equations

Laplace operator

The domain DA is a Banach space with the same norm of H2(Ω).
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Abstract evolution equations

Next, given a Banach space X , we consider evolution equations of
the form: u̇ = Cu + f (u) , u(0) = u0 , u, u0 ∈ X where C is the
generator of a C0 semigroup T (t) on X and f : X → X is smooth
of class Ck .
The solution to this equation satisfies the integral equation
(Duhamel’s formula):
u(t) = T (t)u0 +

∫ t
0 T (t − s)f (u(s))ds

Since f is locally Lipschitz and ‖T (t)‖ ≤ Meωt , Picard iteration
shows that C + f generates a non-linear C0 semigroup F (t). Since
the integral equation above is not defined ∀t ∈ R+, this semigroup
is only defined on an interval [0, α).
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Reaction-diffusion equations

We consider now an n-component reaction-diffusion system:
d
dt ui = di ∆ui +

∑n
j=1 cijuj + fi (u) , (i = 1, · · · , n).

on a bounded domain Ω ⊂ Rm(m ≤ 3) with Dirichlet or Neumann
conditions on its smooth boundary ∂Ω where di and cij are real
numbers, di > 0 , fi : Rn → R are smooth functions in u1, · · · , un
with fi (0) = 0.
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Reaction-diffusion equations

We write this system as u̇ = D∆u + Cu + f (u) where
u = (u1, .., un)T ,D = diag(d1, .., dn) is a diagonal matrix,
C = (cij) and f = (f1, .., fn)T .

Let Ãi : DA2
i
→ DAi be the operator defined as before, i.e. the

extention of di ∆ restricted to DA2
i
. Set also the new space

X = DA1 × · · · × DAn and Ã = Ã1 × · · · × Ãn. So we have that Ã
generates a compact analytic semigroup on X . Then also Ã + C
generates a compact analytic semigroup. By the theorem above we
have that f : X → X is a smooth function. So by Picard Iteration
we have that D∆ + C + f generates a C0 semigroup.
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Principle of linearized stability

The principle of linearized stability in the finite dimensional case
says that, if 0 is an equilibrium of the system of differential
equations u̇ = f (u) and all the eigenvalues of the Jacobian matrix
Df have real part less than zero, then the zero solution is stable.
We see now how this result is also valid for evolution equations
under some assumptions.
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Principle of linearized stability

Consider the equation: u̇(t) = A(u(t)) + f (u(t)) ,u(0) = u0, t > 0
where A is a sectorial operator on X and f : X → X is smooth and
suppose 0 is a solution. We have u(t) = F (t)u0, where F (t) is the
non linear semigroup associated with the equation above.

Definition: The zero solution of the equation above is called stable
in X if ∀ε > 0,∃δ > 0 such that: u0 ∈ X ,‖u(0)‖ ≤ δ ⇒
the solution is defined ∀t > 0 , ‖u(t)‖ ≤ ε, ∀t ≥ 0.
The zero solution is called asymptotically stable is it is stable and
moreover ∃δ0 > 0 such that if ‖u(0)‖ ≤ δ0 then
limt→∞ ‖u(t)‖ = 0
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Principle of linearized stability

The spectral bound of a sectorial operator A is defined as:
s(A) = sup {<λ |λ ∈ σ(A)}.

Theorem (Principle of linear stability):
Suppose s(A) < 0 and F : X → X is smooth in a neighborhood of
0.
Then ∀ω ∈ [0,−s(A)] there exists positive constants
M = M(ω),r = r(ω) such that if u0 ∈ X ,u0 ≥ r ⇒ we have that
the solution is defined ∀t > 0 and ‖u(t)‖ ≤ Me−ωt ‖u0‖,t ≥ 0
Therefore the zero solution is asymptotically stable.
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Turing instability

Let’s consider the following reaction-diffusion system of two
coupled equations on the interval [0, π] for u = u(t, x):
∂u
∂t = d1

∂2u
∂x2 + f1(u, v)

∂v
∂t = d2

∂2v
∂x2 + f2(u, v)

with u(t, 0) = u(t, π) = 0 and f1 and f2 are smooth functions.
This is a particular case covered by the previous theory so the
system defines a nonlinear local semigroup on H2([0, π]).
Assume that f1(0, 0) = 0 = f2(0, 0) then (u, v) = (0, 0) is an
homogeneous solution, that is a solution of:
∂u
∂t = f1(u, v)
∂v
∂t = f2(u, v)

The Jacobian matrix is: Df =

(
∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)
=

(
m11 m12
m21 m22

)
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This is a particular case covered by the previous theory so the
system defines a nonlinear local semigroup on H2([0, π]).
Assume that f1(0, 0) = 0 = f2(0, 0) then (u, v) = (0, 0) is an
homogeneous solution, that is a solution of:
∂u
∂t = f1(u, v)
∂v
∂t = f2(u, v)

The Jacobian matrix is: Df =

(
∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)
=

(
m11 m12
m21 m22

)
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Turing instability
The eigenvalues are found by:
λ2−(TrM)λ+DetM = 0 = λ2−(m11 +m22)λ+m11m22−m21m12

Suppose the equilibrium is stable, that is: m11 + m22 < 0 and
m11m22 −m21m12 > 0
Consider now the linearized system with diffusion terms.
∂u
∂t = d1

∂2u
∂x2 + m11u + m12v

∂v
∂t = d2

∂2v
∂x2 + m21u + m22v

the right hand side of this equation is (Ã + C)(u, v).
The spectrum of this operator consists of eigenvalues satisfying for
all integer k the equation:∣∣∣∣∣m11 − λ− k2d1 m12

m21 m22 − λ− k2d2

∣∣∣∣∣ = 0
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So we get: λ2 + λ
[
k2(d1 + d2 − (m11 + m22)

]
+ h(k2) = 0

where h(k2) = k4d1d2− k2(m11d2 + m22d1) + (m11m22−m21m12).

Since TrM < 0, conditions for instability are given by the function
h(k2), That is, if h(k2) < 0 for some k, then there is instability.
So we have: h(k2) = (d1d2)k4 − (m11d2 + m22d1)k2 + DetM
and to have h(k2) < 0 the following must be satisfied:

I m11d2 + m22d1 > 0

and the minimum of h(k2) must be below 0, this gives:

I (m11d2+m22d1)2

4d1d2
> DetM
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Finally we have that, to have diffusion-driven instability the
following conditions must be satisfied:

I TrM = m11 + m22 < 0
I DetM = m11m22 −m21m12 > 0
I m11d2 + m22d1 > 0
I (m11d2+m22d1)2

4d1d2
> DetM

In case these conditions are satisfied we have that the spatially
homogeneous stable state becomes unstable if there is integer k in
a range k1 < k < k2 where k1 and k2 are given by:
k2

1,2 = (m11d2+m22d1)
2d1d2

±
√

(m11d2+m22d1)2−4d1d2DetM
2d1d2
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