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Gradient Systems

Definition (Gradient Systems on Rn)

A system of differential equations of the form

X ′ = −grad V (X),

where X = (x1, . . . , xn) and V : Rn → R is a C∞-function, and

grad V = ∇V =

(
∂V

∂x1
, . . . ,

∂V

∂xn

)
.

The vector field grad V is called the gradient of V .

Note: the negative sign in this system is traditional. And

−grad V (X) = grad (−V (X)).
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Important equality
The following equality is fundamental:

DVX(Y ) = grad V (X) · Y.

This says that the derivative of V at X evaluated at
Y = (y1, . . . , yn) ∈ Rn is given by the dot product of the vectors
grad V (X) and Y .

This follows immediately from the formula

DVX(Y ) =
n∑
j=1

∂V

∂xj
(X)yj .

Let X(t) be a solution of the gradient system X ′ = −grad V (X) with
X(0) = X0, and let V̇ : Rn → R be the derivative of V along this
solution. That is

V̇ (X) =
d

dt
V (X(t)).
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Proposition

The function V is a Lyapunov function for the system
X ′ = −grad V (X). Moreover, V(X) = 0 if and only if X is an
equilibrium point.

Proof.

By the chain rule, we have

V̇ (X) = DVX(X ′)

= grad V (X) · (−grad V (X))

= −|grad V (X)|2 ≤ 0.

In particular, V̇ (X) = 0 if and only if grad V (X) = 0.

Remark: Lyapunov functions are scalar functions that may be used to
prove the stability of an equilibrium of an ODE.
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Immediate consequence:
If X∗ is an isolated minimum of V , then X∗ is an asymptotically stable
equilibrium of the gradient system.

The fact that X∗ is isolated guarentees that V̇ < 0 in a neighbourhood
of X∗ (not including X∗).
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Level surfaces

To understand a gradient flow geometrically, we look at the level
surfaces of the function V : Rn → R. These are the subsets V −1(c)
with c ∈ R.

If X ∈ V −1(c) is a regular point, that is grad V (X) 6= 0, then V −1(c)
looks like a ’surface’ of dimension n− 1 near X.

If all points in V −1(c) are regular points, then we say that c is a regular
value for V .

If X is a nonregular point for V , then grad V (X) = 0, so X is a critical
point for the function V , since all partial derivatives of V vanish at X.

In the case n = 2, V −1(c) is a simple curve through X when X is a
regular point. And if c is a regular value, then the level set V −1(c) is a
union of simple (or nonintersecting) curves.
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Suppose that Y is a vector that is tangent to the level surface V −1(c)
at X. Then we can find a curve γ(t) in this level set for which
γ′(0) = Y . Since V is constant along γ, it follows that

DVX(Y ) =
d

dt

∣∣∣∣
t=0

V ◦ γ(t) = 0.

Thus, we have gradV (X) · Y = 0, or, in other words, grad V (X) is
perpendicular to every tangent vector to the level set V −1(c) at X.
That is, the vector field grad V (X) is perpendicular to the level
surfaces V −1(c) at all regular points of V .
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Theorem (Properties of Gradient Systems)

For the system X ′ = −grad V (X), the following holds:
1 If c is a regular value of V , then the vector field is perpendicular to

the level set V −1(c).
2 The critical points of V are the equilibrium points of the system.
3 If a critical point is an isolated minimum of V , then this point is

an asymptotically stable equilibrium point.
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Example, for n = 2

Let V : R2 → R be the function V (x, y) = x2(x− 1)2 + y2.

Then the gradient system, for X = (x, y)T ,

X ′ = F (X) = −grad V (X)

is given by {
x′ = −2x(x− 1)(2x− 1)
y′ = −2y.
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Example, for n = 2

The system {
x′ = −2x(x− 1)(2x− 1)
y′ = −2y,

has three equilibrium points: (0, 0), (1
2 , 0) and (1, 0). The linearization

at these three points yield the following matrices:

DF (0, 0) =

(
−2 0
0 −2

)
, DF (

1

2
, 0) =

(
1 0
0 −2

)
,

DF (1, 0) =

(
−2 0
0 −2

)
.

Hence (0, 0) and (1, 0) are sinks, while (1
2 , 0) is a saddle.
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Example, for n = 2

Figure: The level sets and phase portrait for the gradient
system determined by V (x, y) = x2(x− 1)2 + y2.
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Example, for n = 2

Other observations:

Both the x- and y-axes are invariant, as are the lines x = 1
2 and

x = 1.

The stable curve at (1
2 , 0) is the line x = 1

2 .

The unstable curve at (1
2 , 0) is the interval (0, 1) on the x-axis.
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Passage

A lot of gradient systems can be understood quite well.

Examples of gradient systems are the Cahn-Hilliard equation, the
extended Fisher-Kolmogorov equation and the Swift-Hohenberg
equation.
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Cahn-Hilliard equation

The Cahn-Hilliard equation is given, in general, by

∂tu = ∆(−∆u+ F ′(u))

= −∇2(∇2u− F ′(u))

∂u

∂t
= − ∂2

∂x2

(
∂2u

∂x2
− F ′(u)

)
,

where u = u(x, t), x ∈ Ω ∈ Rn and F is a smooth function having two
degenerate minima, e.g.,

F (u) =
1

4
u4 − 1

2
u2, F ′(u) = u3 − u.

The function F is called the potential.
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Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard)
describes phase separation in binary alloys: Spinodal decomposition.

Definition (Spinodal decomposition)

When binary alloys are cooled rapidly to low temperatures below the
critical point, they tend to form quickly inhomogeneities forming a
granular structure.

 PATTERNS
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Figure: Microstructural evolution under the Cahn-Hilliard equation,
demonstrating distinctive coarsening and phase separation.
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Many more applications

There are many more applications of the CH-equation:

Electric voltage

Reacting chemicals

For my masterthesis: Patterns in musselbeds.
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Connection between CH-equation and gradient systems
We introduce the functional

W (u) =

∫
Ω

{
F (u) +

1

2
|∇2u|2

}
dx,

where the function F (u), as before, is smooth with two degenerate
minima.

The function F (u) is a so-called double well potential.

Figure: The double well potential F (u) = 1
4u

4 − 1
2u

2.
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Connection between CH-equation and gradient systems
One can show:

∂u

∂t
= −Kgrad W (u) = −K∇2(∇2u− F ′(u)),

where K is some positive constant or function. 1

Here, the notion of Hilbert space is needed!

Hence the Cahn-Hilliard equation is a gradient system, and W a
Lyapunov function.

Remark: This is a very simple explanation of the CH-equation as a
gradient system.

1[Fife]
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Other equations
The Cahn-Hilliard equation, for F (u) = 1

4u
4 − 1

2u
2, is

∂u

∂t
= − ∂2

∂x2

{
∂2u

∂x2
+ u− u3

}
.

Another fourth order parabolic differential equation, for f(u) = u− u3:

∂u

∂t
= −γ ∂

4u

∂x4
+ β

∂2u

∂x2
+ f(u),

where γ > 0 and β ∈ R.

β > 0 : Extended Fisher-Kolmogorov equation (EFK),

β < 0 : Swift-Hohenberg equation (SH).

Note that parameters γ and β can be combined into a single parameter
via a scaling of the spatial coordinate.
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The EFK- and SH-equation, for various nonlinearities f(u), again serve
as a model in many applications:

pattern formation in a variety of complex fluids and biological
materials

travelling water waves in a shallow channel.
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The Fisher-Kolmogorov equation

A simular, more simple equation, for β > 0 and γ = 0:

∂u

∂t
=
∂2u

∂x2
+ u− u3.

The Fisher-Kolmogorov equation (FK).

Nonlinear reaction-diffusion equation, which is extensively studied.
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The stationary solutions of the FK-equation satisfy the ODE:

u′′ = −u+ u3. (1)

Figure: The phase plane of (1) in the (u, v) = (u, u′)-plane.

Stefanie Postma (Universiteit Leiden)Pattern formation in gradient systems March 7, 2012 24 / 32



The stationary solutions of the FK-equation satisfy the ODE:

u′′ = −u+ u3. (1)

Figure: The phase plane of (1) in the (u, v) = (u, u′)-plane.

Stefanie Postma (Universiteit Leiden)Pattern formation in gradient systems March 7, 2012 24 / 32



The stationary solutions of the FK-equation satisfy the ODE:

u′′ = −u+ u3. (1)

Figure: The phase plane of (1) in the (u, v) = (u, u′)-plane.

Stefanie Postma (Universiteit Leiden)Pattern formation in gradient systems March 7, 2012 24 / 32



Bounded solutions of the FK-equation:

Constant solutions: u(x) ≡ 0 (unstable), u(x) ≡ 1, u(x) ≡ −1
(stable).

Two kinks or heteroclinic solutions connecting (u, u′) = (±1, 0):

u(x) = ± tanh
(
x√
2

)
.

Periodic solutions: Infinitely many solutions, which oscillate
around u = 0.

Stefanie Postma (Universiteit Leiden)Pattern formation in gradient systems March 7, 2012 25 / 32



Introduce the energy functional or Hamiltonian:

E(u) =
1

2
(u′)2 − 1

4
(u2 − 1)2,

which is constant along solutions of (1).

! The classical energy of a particle in a potential.

In connection with the Hamiltonian: an action functional, Lagrangian
action:

J(u) =

∫ (
1

2
(u′)2 +

1

4
(1− u2)2

)
dx.

Here J(u) is a Lyapunov function for the flow of the original
FK-equation.
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The EFK- and SH-equation

The Extended Fisher-Kolmogorov equation

∂u

∂t
= −∂

4u

∂x4
+ β

∂2u

∂x2
+ u− u3, β > 0.

The Swift-Hohenberg equation

∂u

∂t
= −

(
1 +

∂2u

∂x2

)2

+ αu− u3, α ∈ R

can be rescaled to

∂u

∂t
= −∂

4u

∂x4
+ β

∂2u

∂x2
+ u− u3,

with β = − 2√
α−1

< 0.
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General equation

Equations of the general form

∂u

∂t
= −γ ∂

4u

∂x4
+ β

∂2u

∂x2
+ f(u), γ > 0, β ∈ R,

where f(u) is a nonlinear function.

For example,

f(u) = u− u3, and therefore F (u) =

∫
f(s) ds =

1

2
u2 − 1

4
u4.
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General equation
Again interested in the stationary (time-independent) solutions:

−γu′′′′ + βu′′ + f(u) = 0,

where we set f(u) = u− u3.

The energy functional or Hamiltonian is

E(u) = −γu′u′′′ + γ

2
(u′′)2 +

β

2
(u′)2 + F (u).

Here F (u) is the potential.

The Lagrangian action associated with this Hamiltonian is

J(u) =

∫ (
γ

2
(u′′)2 +

β

2
(u′)2 − F (u))

)
dx.

Here J(u) is a Lyapunov function for the flow of the original general
form of the EFK-equation.
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Comparison

The functional for the Cahn-Hilliard equation:

W (u) =

∫ {
F (u) +

1

2
|∇2u|2

}
dx.

The functional for the general stationary equation:

J(u) =

∫ (
γ

2
(u′′)2 +

β

2
(u′)2 − F (u))

)
dx.

Both Lyapunov functions!
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Last remarks

A lot of research has been done for these type of equations.

Goal for my master thesis:
To describe the patterns found in musselbeds, using the Cahn-Hilliard
equation.
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Thank you for your attention!
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