Pattern formation in gradient systems

Seminar on Spatio-Temporal Patterns

Stefanie Postma

Universiteit Leiden

March 7, 2012

8utine

- Some properties
- Example
- Passage
(2) The Cahn-Hilliard equation
- Applications
- Connection between CH-equation and gradient systems
(3) The Extended Fisher-Kolmogorov and Swift-Hohenberg equation
- The Fisher-Kolmogorov equation
- The EFK- and SH-equation
- General equation
- Comparison

Gradient Systems

Definition (Gradient Systems on \mathbb{R}^{n})

A system of differential equations of the form

$$
X^{\prime}=-\operatorname{grad} V(X)
$$

where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{∞}-function, and

$$
\operatorname{grad} V=\nabla V=\left(\frac{\partial V}{\partial x_{1}}, \ldots, \frac{\partial V}{\partial x_{n}}\right) .
$$

The vector field grad V is called the gradient of V.

Gradient Systems

Definition (Gradient Systems on \mathbb{R}^{n})

A system of differential equations of the form

$$
X^{\prime}=-\operatorname{grad} V(X),
$$

where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{∞}-function, and

$$
\operatorname{grad} V=\nabla V=\left(\frac{\partial V}{\partial x_{1}}, \ldots, \frac{\partial V}{\partial x_{n}}\right) .
$$

The vector field grad V is called the gradient of V.

Note: the negative sign in this system is traditional. And

$$
-\operatorname{grad} V(X)=\operatorname{grad}(-V(X))
$$

Important equality

The following equality is fundamental:

$$
D V_{X}(Y)=\operatorname{grad} V(X) \cdot Y
$$

This says that the derivative of V at X evaluated at $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ is given by the dot product of the vectors $\operatorname{grad} V(X)$ and Y.

Important equality

The following equality is fundamental:

$$
D V_{X}(Y)=\operatorname{grad} V(X) \cdot Y
$$

This says that the derivative of V at X evaluated at $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ is given by the dot product of the vectors $\operatorname{grad} V(X)$ and Y.

This follows immediately from the formula

$$
D V_{X}(Y)=\sum_{j=1}^{n} \frac{\partial V}{\partial x_{j}}(X) y_{j}
$$

Important equality

The following equality is fundamental:

$$
D V_{X}(Y)=\operatorname{grad} V(X) \cdot Y
$$

This says that the derivative of V at X evaluated at $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ is given by the dot product of the vectors $\operatorname{grad} V(X)$ and Y.

This follows immediately from the formula

$$
D V_{X}(Y)=\sum_{j=1}^{n} \frac{\partial V}{\partial x_{j}}(X) y_{j}
$$

Let $X(t)$ be a solution of the gradient system $X^{\prime}=-\operatorname{grad} V(X)$ with $X(0)=X_{0}$, and let $\dot{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the derivative of V along this solution. That is

$$
\dot{V}(X)=\frac{d}{d t} V(X(t))
$$

Proposition

The function V is a Lyapunov function for the system
$X^{\prime}=-\operatorname{grad} V(X)$. Moreover, $V(X)=0$ if and only if X is an equilibrium point.

Proposition

The function V is a Lyapunov function for the system
$X^{\prime}=-\operatorname{grad} V(X)$. Moreover, $V(X)=0$ if and only if X is an equilibrium point.

Proof.

By the chain rule, we have

$$
\begin{aligned}
\dot{V}(X) & =D V_{X}\left(X^{\prime}\right) \\
& =\operatorname{grad} V(X) \cdot(-\operatorname{grad} V(X)) \\
& =-|\operatorname{grad} V(X)|^{2} \leq 0 .
\end{aligned}
$$

In particular, $\dot{V}(X)=0$ if and only if $\operatorname{grad} V(X)=0$.

Proposition

The function V is a Lyapunov function for the system
$X^{\prime}=-\operatorname{grad} V(X)$. Moreover, $V(X)=0$ if and only if X is an equilibrium point.

Proof.

By the chain rule, we have

$$
\begin{aligned}
\dot{V}(X) & =D V_{X}\left(X^{\prime}\right) \\
& =\operatorname{grad} V(X) \cdot(-\operatorname{grad} V(X)) \\
& =-|\operatorname{grad} V(X)|^{2} \leq 0 .
\end{aligned}
$$

In particular, $\dot{V}(X)=0$ if and only if $\operatorname{grad} V(X)=0$.

Remark: Lyapunov functions are scalar functions that may be used to prove the stability of an equilibrium of an ODE.

Immediate consequence:
If X^{*} is an isolated minimum of V, then X^{*} is an asymptotically stable equilibrium of the gradient system.

Immediate consequence:
If X^{*} is an isolated minimum of V, then X^{*} is an asymptotically stable equilibrium of the gradient system.

The fact that X^{*} is isolated guarentees that $\dot{V}<0$ in a neighbourhood of X^{*} (not including X^{*}).

Level surfaces

To understand a gradient flow geometrically, we look at the level surfaces of the function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. These are the subsets $V^{-1}(c)$ with $c \in \mathbb{R}$.

Level surfaces

To understand a gradient flow geometrically, we look at the level surfaces of the function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. These are the subsets $V^{-1}(c)$ with $c \in \mathbb{R}$.
If $X \in V^{-1}(c)$ is a regular point, that is $\operatorname{grad} V(X) \neq 0$, then $V^{-1}(c)$ looks like a 'surface' of dimension $n-1$ near X.

Level surfaces

To understand a gradient flow geometrically, we look at the level surfaces of the function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. These are the subsets $V^{-1}(c)$ with $c \in \mathbb{R}$.

If $X \in V^{-1}(c)$ is a regular point, that is $\operatorname{grad} V(X) \neq 0$, then $V^{-1}(c)$ looks like a 'surface' of dimension $n-1$ near X.

If all points in $V^{-1}(c)$ are regular points, then we say that c is a regular value for V.

Level surfaces

To understand a gradient flow geometrically, we look at the level surfaces of the function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. These are the subsets $V^{-1}(c)$ with $c \in \mathbb{R}$.

If $X \in V^{-1}(c)$ is a regular point, that is $\operatorname{grad} V(X) \neq 0$, then $V^{-1}(c)$ looks like a 'surface' of dimension $n-1$ near X.

If all points in $V^{-1}(c)$ are regular points, then we say that c is a regular value for V.

If X is a nonregular point for V, then $\operatorname{grad} V(X)=0$, so X is a critical point for the function V, since all partial derivatives of V vanish at X.

Level surfaces

To understand a gradient flow geometrically, we look at the level surfaces of the function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. These are the subsets $V^{-1}(c)$ with $c \in \mathbb{R}$.

If $X \in V^{-1}(c)$ is a regular point, that is $\operatorname{grad} V(X) \neq 0$, then $V^{-1}(c)$ looks like a 'surface' of dimension $n-1$ near X.

If all points in $V^{-1}(c)$ are regular points, then we say that c is a regular value for V.

If X is a nonregular point for V, then $\operatorname{grad} V(X)=0$, so X is a critical point for the function V, since all partial derivatives of V vanish at X. In the case $n=2, V^{-1}(c)$ is a simple curve through X when X is a regular point. And if c is a regular value, then the level set $V^{-1}(c)$ is a union of simple (or nonintersecting) curves.

Suppose that Y is a vector that is tangent to the level surface $V^{-1}(c)$ at X. Then we can find a curve $\gamma(t)$ in this level set for which $\gamma^{\prime}(0)=Y$. Since V is constant along γ, it follows that

$$
D V_{X}(Y)=\left.\frac{d}{d t}\right|_{t=0} V \circ \gamma(t)=0
$$

Suppose that Y is a vector that is tangent to the level surface $V^{-1}(c)$ at X. Then we can find a curve $\gamma(t)$ in this level set for which $\gamma^{\prime}(0)=Y$. Since V is constant along γ, it follows that

$$
D V_{X}(Y)=\left.\frac{d}{d t}\right|_{t=0} V \circ \gamma(t)=0
$$

Thus, we have $\operatorname{grad} V(X) \cdot Y=0$, or, in other words, $\operatorname{grad} V(X)$ is perpendicular to every tangent vector to the level set $V^{-1}(c)$ at X. That is, the vector field $\operatorname{grad} V(X)$ is perpendicular to the level surfaces $V^{-1}(c)$ at all regular points of V.

Theorem (Properties of Gradient Systems)

For the system $X^{\prime}=-\operatorname{grad} V(X)$, the following holds:
(1) If c is a regular value of V, then the vector field is perpendicular to the level set $V^{-1}(c)$.
(2) The critical points of V are the equilibrium points of the system.
(3) If a critical point is an isolated minimum of V, then this point is an asymptotically stable equilibrium point.

Example, for $n=2$

Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $V(x, y)=x^{2}(x-1)^{2}+y^{2}$.

Example, for $n=2$

Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $V(x, y)=x^{2}(x-1)^{2}+y^{2}$.
Then the gradient system, for $X=(x, y)^{T}$,

$$
X^{\prime}=F(X)=-\operatorname{grad} V(X)
$$

is given by

$$
\left\{\begin{array}{l}
x^{\prime}=-2 x(x-1)(2 x-1) \\
y^{\prime}=-2 y .
\end{array}\right.
$$

Example, for $n=2$

The system

$$
\left\{\begin{array}{l}
x^{\prime}=-2 x(x-1)(2 x-1) \\
y^{\prime}=-2 y,
\end{array}\right.
$$

has three equilibrium points: $(0,0),\left(\frac{1}{2}, 0\right)$ and $(1,0)$. The linearization at these three points yield the following matrices:

$$
\begin{aligned}
& D F(0,0)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right), \quad D F\left(\frac{1}{2}, 0\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right), \\
& D F(1,0)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) .
\end{aligned}
$$

Hence $(0,0)$ and $(1,0)$ are sinks, while $\left(\frac{1}{2}, 0\right)$ is a saddle.

Example, for $n=2$

Figure: The level sets and phase portrait for the gradient system determined by $V(x, y)=x^{2}(x-1)^{2}+y^{2}$.

Example, for $n=2$

Other observations:

Example, for $n=2$

Other observations:

- Both the x - and y-axes are invariant, as are the lines $x=\frac{1}{2}$ and $x=1$.
- The stable curve at $\left(\frac{1}{2}, 0\right)$ is the line $x=\frac{1}{2}$.
- The unstable curve at $\left(\frac{1}{2}, 0\right)$ is the interval $(0,1)$ on the x-axis.

Passage

A lot of gradient systems can be understood quite well.

Passage

A lot of gradient systems can be understood quite well.
Examples of gradient systems are the Cahn-Hilliard equation, the extended Fisher-Kolmogorov equation and the Swift-Hohenberg equation.

Cahn-Hilliard equation

The Cahn-Hilliard equation is given, in general, by

$$
\begin{aligned}
\partial_{t} u & =\Delta\left(-\Delta u+F^{\prime}(u)\right) \\
& =-\nabla^{2}\left(\nabla^{2} u-F^{\prime}(u)\right) \\
\frac{\partial u}{\partial t} & =-\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial^{2} u}{\partial x^{2}}-F^{\prime}(u)\right)
\end{aligned}
$$

where $u=u(x, t), x \in \Omega \in \mathbb{R}^{n}$ and F is a smooth function having two degenerate minima, e.g.,

$$
F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u^{2}, \quad F^{\prime}(u)=u^{3}-u .
$$

Cahn-Hilliard equation

The Cahn-Hilliard equation is given, in general, by

$$
\begin{aligned}
\partial_{t} u & =\Delta\left(-\Delta u+F^{\prime}(u)\right) \\
& =-\nabla^{2}\left(\nabla^{2} u-F^{\prime}(u)\right) \\
\frac{\partial u}{\partial t} & =-\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial^{2} u}{\partial x^{2}}-F^{\prime}(u)\right)
\end{aligned}
$$

where $u=u(x, t), x \in \Omega \in \mathbb{R}^{n}$ and F is a smooth function having two degenerate minima, e.g.,

$$
F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u^{2}, \quad F^{\prime}(u)=u^{3}-u .
$$

The function F is called the potential.

Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard) describes phase separation in binary alloys: Spinodal decomposition.

Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard) describes phase separation in binary alloys: Spinodal decomposition.

Definition (Spinodal decomposition)

When binary alloys are cooled rapidly to low temperatures below the critical point, they tend to form quickly inhomogeneities forming a granular structure.

Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard) describes phase separation in binary alloys: Spinodal decomposition.

Definition (Spinodal decomposition)

When binary alloys are cooled rapidly to low temperatures below the critical point, they tend to form quickly inhomogeneities forming a granular structure.

\leadsto PATTERNS

Figure: Microstructural evolution under the Cahn-Hilliard equation, demonstrating distinctive coarsening and phase separation.

Many more applications

There are many more applications of the CH-equation:

- Electric voltage
- Reacting chemicals

Many more applications

There are many more applications of the CH-equation:

- Electric voltage
- Reacting chemicals

For my masterthesis: Patterns in musselbeds.

Connection between CH-equation and gradient systems We introduce the functional

$$
W(u)=\int_{\Omega}\left\{F(u)+\frac{1}{2}\left|\nabla^{2} u\right|^{2}\right\} d x
$$

where the function $F(u)$, as before, is smooth with two degenerate minima.

Connection between CH-equation and gradient systems

 We introduce the functional$$
W(u)=\int_{\Omega}\left\{F(u)+\frac{1}{2}\left|\nabla^{2} u\right|^{2}\right\} d x
$$

where the function $F(u)$, as before, is smooth with two degenerate minima.

The function $F(u)$ is a so-called double well potential.

Figure: The double well potential $F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u_{\overline{2}}^{2}$.

Connection between CH-equation and gradient systems

One can show:

$$
\frac{\partial u}{\partial t}=-K \operatorname{grad} W(u)=-K \nabla^{2}\left(\nabla^{2} u-F^{\prime}(u)\right)
$$

where K is some positive constant or function. ${ }^{1}$ Here, the notion of Hilbert space is needed!

Connection between CH-equation and gradient systems

One can show:

$$
\frac{\partial u}{\partial t}=-K \operatorname{grad} W(u)=-K \nabla^{2}\left(\nabla^{2} u-F^{\prime}(u)\right)
$$

where K is some positive constant or function. ${ }^{1}$ Here, the notion of Hilbert space is needed!

Hence the Cahn-Hilliard equation is a gradient system, and W a Lyapunov function.

Connection between CH-equation and gradient systems

One can show:

$$
\frac{\partial u}{\partial t}=-K \operatorname{grad} W(u)=-K \nabla^{2}\left(\nabla^{2} u-F^{\prime}(u)\right)
$$

where K is some positive constant or function. ${ }^{1}$ Here, the notion of Hilbert space is needed!

Hence the Cahn-Hilliard equation is a gradient system, and W a Lyapunov function.

Remark: This is a very simple explanation of the CH-equation as a gradient system.

${ }^{1}$ [Fife]

Other equations

The Cahn-Hilliard equation, for $F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u^{2}$, is

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{2}}{\partial x^{2}}\left\{\frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}\right\} .
$$

Other equations

The Cahn-Hilliard equation, for $F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u^{2}$, is

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{2}}{\partial x^{2}}\left\{\frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}\right\}
$$

Another fourth order parabolic differential equation, for $f(u)=u-u^{3}$:

$$
\frac{\partial u}{\partial t}=-\gamma \frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+f(u)
$$

where $\gamma>0$ and $\beta \in \mathbb{R}$.

Other equations

The Cahn-Hilliard equation, for $F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u^{2}$, is

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{2}}{\partial x^{2}}\left\{\frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}\right\}
$$

Another fourth order parabolic differential equation, for $f(u)=u-u^{3}$:

$$
\frac{\partial u}{\partial t}=-\gamma \frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+f(u)
$$

where $\gamma>0$ and $\beta \in \mathbb{R}$.

$$
\begin{array}{ll}
\beta>0: & \text { Extended Fisher-Kolmogorov equation (EFK), } \\
\beta<0: & \text { Swift-Hohenberg equation (SH). }
\end{array}
$$

Other equations

The Cahn-Hilliard equation, for $F(u)=\frac{1}{4} u^{4}-\frac{1}{2} u^{2}$, is

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{2}}{\partial x^{2}}\left\{\frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}\right\} .
$$

Another fourth order parabolic differential equation, for $f(u)=u-u^{3}$:

$$
\frac{\partial u}{\partial t}=-\gamma \frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+f(u)
$$

where $\gamma>0$ and $\beta \in \mathbb{R}$.

$$
\begin{array}{ll}
\beta>0: & \text { Extended Fisher-Kolmogorov equation (EFK), } \\
\beta<0: & \text { Swift-Hohenberg equation (SH). }
\end{array}
$$

Note that parameters γ and β can be combined into a single parameter via a scaling of the spatial coordinate.

The EFK- and SH-equation, for various nonlinearities $f(u)$, again serve as a model in many applications:

- pattern formation in a variety of complex fluids and biological materials
- travelling water waves in a shallow channel.

The Fisher-Kolmogorov equation

A simular, more simple equation, for $\beta>0$ and $\gamma=0$:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u-u^{3} .
$$

The Fisher-Kolmogorov equation (FK).

The Fisher-Kolmogorov equation

A simular, more simple equation, for $\beta>0$ and $\gamma=0$:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u-u^{3} .
$$

The Fisher-Kolmogorov equation (FK).
Nonlinear reaction-diffusion equation, which is extensively studied.

The stationary solutions of the FK-equation satisfy the ODE:

$$
\begin{equation*}
u^{\prime \prime}=-u+u^{3} . \tag{1}
\end{equation*}
$$

The stationary solutions of the FK-equation satisfy the ODE:

$$
\begin{equation*}
u^{\prime \prime}=-u+u^{3} \tag{1}
\end{equation*}
$$

Figure: The phase plane of (1) in the $(u, v)=\left(u, u^{\prime}\right)$-plane.

The stationary solutions of the FK-equation satisfy the ODE:

$$
\begin{equation*}
u^{\prime \prime}=-u+u^{3} \tag{1}
\end{equation*}
$$

Figure: The phase plane of (1) in the $(u, v)=\left(u, u^{\prime}\right)$-plane.

Bounded solutions of the FK-equation:

- Constant solutions: $u(x) \equiv 0$ (unstable), $u(x) \equiv 1, u(x) \equiv-1$ (stable).
- Two kinks or heteroclinic solutions connecting $\left(u, u^{\prime}\right)=(\pm 1,0)$: $u(x)= \pm \tanh \left(\frac{x}{\sqrt{2}}\right)$.
- Periodic solutions: Infinitely many solutions, which oscillate around $u=0$.

Introduce the energy functional or Hamiltonian:

$$
E(u)=\frac{1}{2}\left(u^{\prime}\right)^{2}-\frac{1}{4}\left(u^{2}-1\right)^{2},
$$

which is constant along solutions of (1).
tus The classical energy of a particle in a potential.

Introduce the energy functional or Hamiltonian:

$$
E(u)=\frac{1}{2}\left(u^{\prime}\right)^{2}-\frac{1}{4}\left(u^{2}-1\right)^{2}
$$

which is constant along solutions of (1).
\leftrightarrow The classical energy of a particle in a potential.
In connection with the Hamiltonian: an action functional, Lagrangian action:

$$
J(u)=\int\left(\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{4}\left(1-u^{2}\right)^{2}\right) d x
$$

Here $J(u)$ is a Lyapunov function for the flow of the original FK-equation.

The EFK- and SH-equation

The Extended Fisher-Kolmogorov equation

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}, \quad \beta>0 .
$$

The EFK- and SH-equation

The Extended Fisher-Kolmogorov equation

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}, \quad \beta>0 .
$$

The Swift-Hohenberg equation

$$
\frac{\partial u}{\partial t}=-\left(1+\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\alpha u-u^{3}, \quad \alpha \in \mathbb{R}
$$

can be rescaled to

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}
$$

with $\beta=-\frac{2}{\sqrt{\alpha-1}}<0$.

General equation

Equations of the general form

$$
\frac{\partial u}{\partial t}=-\gamma \frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+f(u), \quad \gamma>0, \beta \in \mathbb{R}
$$

where $f(u)$ is a nonlinear function.

General equation

Equations of the general form

$$
\frac{\partial u}{\partial t}=-\gamma \frac{\partial^{4} u}{\partial x^{4}}+\beta \frac{\partial^{2} u}{\partial x^{2}}+f(u), \quad \gamma>0, \beta \in \mathbb{R}
$$

where $f(u)$ is a nonlinear function.
For example,

$$
f(u)=u-u^{3}, \quad \text { and therefore } F(u)=\int f(s) d s=\frac{1}{2} u^{2}-\frac{1}{4} u^{4}
$$

General equation

Again interested in the stationary (time-independent) solutions:

$$
-\gamma u^{\prime \prime \prime \prime}+\beta u^{\prime \prime}+f(u)=0
$$

where we set $f(u)=u-u^{3}$.

General equation

Again interested in the stationary (time-independent) solutions:

$$
-\gamma u^{\prime \prime \prime \prime}+\beta u^{\prime \prime}+f(u)=0
$$

where we set $f(u)=u-u^{3}$.
The energy functional or Hamiltonian is

$$
E(u)=-\gamma u^{\prime} u^{\prime \prime \prime}+\frac{\gamma}{2}\left(u^{\prime \prime}\right)^{2}+\frac{\beta}{2}\left(u^{\prime}\right)^{2}+F(u) .
$$

Here $F(u)$ is the potential.

General equation

Again interested in the stationary (time-independent) solutions:

$$
-\gamma u^{\prime \prime \prime \prime}+\beta u^{\prime \prime}+f(u)=0
$$

where we set $f(u)=u-u^{3}$.
The energy functional or Hamiltonian is

$$
E(u)=-\gamma u^{\prime} u^{\prime \prime \prime}+\frac{\gamma}{2}\left(u^{\prime \prime}\right)^{2}+\frac{\beta}{2}\left(u^{\prime}\right)^{2}+F(u) .
$$

Here $F(u)$ is the potential.
The Lagrangian action associated with this Hamiltonian is

$$
\left.J(u)=\int\left(\frac{\gamma}{2}\left(u^{\prime \prime}\right)^{2}+\frac{\beta}{2}\left(u^{\prime}\right)^{2}-F(u)\right)\right) d x
$$

Here $J(u)$ is a Lyapunov function for the flow of the original general form of the EFK-equation.

Comparison

The functional for the Cahn-Hilliard equation:

$$
W(u)=\int\left\{F(u)+\frac{1}{2}\left|\nabla^{2} u\right|^{2}\right\} d x
$$

The functional for the general stationary equation:

$$
\left.J(u)=\int\left(\frac{\gamma}{2}\left(u^{\prime \prime}\right)^{2}+\frac{\beta}{2}\left(u^{\prime}\right)^{2}-F(u)\right)\right) d x
$$

Comparison

The functional for the Cahn-Hilliard equation:

$$
W(u)=\int\left\{F(u)+\frac{1}{2}\left|\nabla^{2} u\right|^{2}\right\} d x
$$

The functional for the general stationary equation:

$$
\left.J(u)=\int\left(\frac{\gamma}{2}\left(u^{\prime \prime}\right)^{2}+\frac{\beta}{2}\left(u^{\prime}\right)^{2}-F(u)\right)\right) d x
$$

Both Lyapunov functions!

Last remarks

A lot of research has been done for these type of equations.

Last remarks

A lot of research has been done for these type of equations.
Goal for my master thesis:
To describe the patterns found in musselbeds, using the Cahn-Hilliard equation.

Thank you for your attention!

