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What is epilepsy?

Pathology

Neurological disorder, affecting 1% of world population

Characterized by increased probability of recurring seizures

Seizures

The activity of braincells hypersynchronizes

Observed as large oscillations
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EEG during a seizure
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Goal of this research

Goals

Study several models of neural activity in neocortex

Identify correspondences between these models

Extrapolate results from simpler models to more complex
models

Results so far

A large, detailed model describing activity of individual
neurons in both normal and epileptiform states

A simple, lumped model that has shown to have some
similarity [Visser et al., 2010]
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Motivation of model

Simulation on Youtube

Sid Visser, Hil Meijer, Stephan van Gils Analysis of a lumped model of neocortex to study epileptiform activity

http://www.youtube.com/watch?v=pq2A5v5hpdg
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Model

Two excitatory populations:

ẋ1(t) = −µ1x1(t)−F1(x1(t − τi )) + G1(x2(t − τe))

ẋ2(t) = −µ2x2(t)−F2(x2(t − τi )) + G2(x1(t − τe))
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ẋ2(t) = −µ2x2(t)−F2(x2(t − τi )) + G2(x1(t − τe))

Sid Visser, Hil Meijer, Stephan van Gils Analysis of a lumped model of neocortex to study epileptiform activity



Introduction
Analysis

Numerical continuation
Conclusions

Model

Two excitatory populations:
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Fixed points and eigenvalues
Linear stability
Bifurcations
First Lyapunov coefficient

Simplifications

Make system symmetric:

µ1 = µ2 := µ F1 = F2 := F G1 = G2 := G

Choose F(x) and G(x) as rescalings of:

S = (tanh(x − a)− tanh(−a)) cosh2(−a)

Sid Visser, Hil Meijer, Stephan van Gils Analysis of a lumped model of neocortex to study epileptiform activity
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Time rescaling

Time is rescaled to non-dimensionalize system:

ẋ1(t) = −x1(t)− α1S(β1x1(t − τ1)) + α2S(β2x2(t − τ2))

ẋ2(t) = −x2(t)− α1S(β1x2(t − τ1)) + α2S(β2x1(t − τ2))

Introduce vector notation:

ẋ(t) = f(xt), with xt ∈ C ([−h, 0],R2) and h = max(τ1, τ2).

Main parameters of interest: representing connection strengths
between populations.
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Fixed points

Corollary

The origin is always a fixed point of the DDE.

Theorem

The DDE only has only symmetric fixed points, i.e.
f(x) = 0 =⇒ x = (x∗, x∗).
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Linearization

The DDE is linearized about an equilibrium:

u̇1(t) = −u1(t)− k1u1(t − τ1) + k2u2(t − τ2),

u̇2(t) = −u2(t)− k1u2(t − τ1) + k2u1(t − τ2),

in which

k1 := α1β1S ′(β1x∗) k2 := α2β2S ′(β2x∗).

Note that k1 and k2 depend on the equilibrium at which we
linearize.
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Characteristic equation and eigenvalues

Consider solutions of the form u(t) = eλtc, c ∈ R2. Non-trivial
solutions of the system correspond with ∆(λ)c = 0, for:

∆(λ) =

[
λ+ 1 + k1e−λτ1 −k2e−λτ2

−k2e−λτ2 λ+ 1 + k1e−λτ1

]
Non-trivial solutions exist when det ∆(λ) = 0, or:

(λ+ 1 + k1e−λτ1 + k2e−λτ2)︸ ︷︷ ︸
:=∆+(λ)

(λ+ 1 + k1e−λτ1 − k2e−λτ2)︸ ︷︷ ︸
:=∆−(λ)

= 0.

This characteristic function has an infinite (but countable) number
of roots.
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Symmetries of solutions

Theorem

Roots of ∆− correspond to symmetric solutions, whereas roots of
∆+ relate to asymetric solutions.

Proof.

Let Z2 act on C2 so that −1 ∈ Z2 acts as ξ(x , y) : (x , y) 7→ (y , x),
then:

∆−(λ) = 0⇔

{
∆(λ)v = 0

ξv = v

∆+(λ) = 0⇔

{
∆(λ)v = 0

ξv = −v
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Roots of |∆(λ)|

Theorem

For |λ| ≥ C0|e−λh| and |λ| > C , with C ≥ C0, |∆(λ)| > 0. Hence,
∆(λ) has a zero free right half-plane [Bellman and Cooke, 1963].
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Minimal Stability Region

Theorem

For |k1|+ |k2| < 1 the system has no eigenvalues with positive real
part.
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Bifurcations

Note:

As in ODEs, an equilibrium of a DDE loses its stablity when either

a single real eigenvalue passes through zero
(fold/transcritical), or

a pair of complex eigenvalues passes through the imaginary
axis (Hopf).
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Fold/transcritical bifurcation

Theorem

Equilibria undergo a fold or transcritical bifurcation on the lines
1 + k1 ± k2 = 0 in (k1, k2)-space.
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Hopf bifurcations

Theorem

Two curves, h+(ω) and h−(ω), exist along which the linearized
system has a pair of complex eigenvalues λ = ±iω.

Proof.

For now, we consider only ∆+(iω) = 0; ∆−(iω) is similar.

iω + 1 + k1e−iωτ1 + k2e−iωτ2 = 0[
cos(ωτ1) cos(ωτ2)
sin(ωτ1) sin(ωτ2)

] [
k1

k2

]
=

[
−1
ω

]
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Hopf bifurcations

Proof cntd.

The matrix is invertible if det = sin(ω(τ2 − τ1)) 6= 0, yielding:[
k1

k2

]
= h+(ω) :=

−1

sin(ω(τ2 − τ1))

[
sin(ωτ2) cos(ωτ2)
− sin(ωτ1) − cos(ωτ1)

] [
1
ω

]
.
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Bifurcations in (k1, k2)-space

Very sensitive, complex branch structure

Intersections correspond with codim-2 bifurcations.

k1

k2

(τ1 = 11.6, τ2 = 20.3)
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Returning branches

Theorem

For a given ω0 > 0, ∆(λ) has no roots λ = ±iω, ω > ω0 inside the

square |k1|+ |k2| <
√

1 + ω2
0.

Proof.

First, assume iω is a root of ∆+ (a similar argument holds for ∆−):

0 = |1 + iω + k1e−iωτ1 + k2e−iωτ2 |,
≥ |1 + iω| − |k1| − |k2|.

Then, this root lies outside the designated square for ω > ω0.
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Revised stability region

Conjecture

For the considered parameters τ1 and τ2 the full stability region is
bounded, connected and contains the origin.
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The first Lyapunov coefficient

Stability region partly bounded by curve of Hopfs

The first Lyapunov coefficient is determined along the
boundary

Normal given by [Diekmann et al, 1995]:

c1 =
1

2
qTD3f(0)(φ, φ, φ̄)

+ qTD2f(0)(e0·∆(0)−1D2f(0)(φ, φ̄), φ)

+
1

2
qTD2f(0)(e2iω·∆(2iω)−1D2f(0)(φ, φ), φ̄).
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Codim 2 bifurcations

Generalized Hopf

Lypunov coefficient passes through zero,

Generalized Hopf bifurcation at boundary

Sid Visser, Hil Meijer, Stephan van Gils Analysis of a lumped model of neocortex to study epileptiform activity



Introduction
Analysis

Numerical continuation
Conclusions

Fixed points and eigenvalues
Linear stability
Bifurcations
First Lyapunov coefficient

Summary

Equilibria

Only symmetric equilibria

Stability region identified

Bifurcations of stability region

Fold and transcritical bifurcations

Hopf-bifurcations, both sub- and supercritical

Zero-Hopf and Hopf-Hopf
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Overview
One parameter
Two parameters

Numerical bifurcation analysis

One parameter

Identify stable and unstable manifolds of non-trivial equilibrium
and periodic solutions for varying α2.

Two parameters

Continue boundaries of stable solutions in α1 and α2.

Software

DDE-BIFTOOL [Engelborghs et al., 2002]

PDDE-CONT/Knut [Roose and Szalai, 2007]
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Complex bifurcation structure

α2

α1

FF2

R2_1

R2_2

FF3

CP2

CP4

Sid Visser, Hil Meijer, Stephan van Gils Analysis of a lumped model of neocortex to study epileptiform activity



Introduction
Analysis

Numerical continuation
Conclusions

Comparison

The bifurcation analysis is compared with a survey on the detailed
model:
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Summary and conclusions

Summary

We studied a simple, lumped model for neural activity

Parameter regions of steady states and periodic solutions are
identified

Conclusions

The behavior of both models varies similarly for changes of
parameters

Regions of multistability are of interest for studying epilepsy
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Future work

Details

Study the model’s codim-2 bifurcations

Proofs rather than conjectures

Next steps

Expand model (e.g. break symmetry)

Parameter estimation
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