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P.S. de Laplace (1749-1827)

We may regard the present state of the universe as

the effect of its past and the cause of its future. An

intellect which at a certain moment would know all

forces that set nature in motion, and all positions of

all items of which nature is composed, if this

intellect were also vast enough to submit these data

to analysis, it would embrace in a single formula

the movements of the greatest bodies of the

universe and those of the tiniest atom; for such an

intellect nothing would be uncertain and the future

just like the past would be present before its eyes.

de Laplace, A Philosophical Essay on Probabilities
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Dynamical systems

x(t) = φt(x(0))

φ0 = id
φt+s = φt ◦ φs x(0) X

φt

x(t + s)

x(t)

φs
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Differential equations and dynamical systems

dx1(t)
dt

= f1(x1(t), x2(t), . . . , xn(t), α1, α2, . . . , αp)

dx2(t)
dt

= f2(x1(t), x2(t), . . . , xn(t), α1, α2, . . . , αp)

...
dxn(t)

dt
= fn(x1(t), x2(t), . . . , xn(t), α1, α2, . . . , αp)

or

ẋ = f (x, α), x =


x1
x2
...

xn

 ∈ Rn, α =


α1
α2
...
αp

 ∈ Rp

φt(x(0)) := x(t)
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Bernoulli system

{
ẋ = 1
ẏ = −x + y2

or

y′ = y2 − x
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J.H. Poincaré (1854-1912)

Return map:

Σ

L0

x0

x
P (x)

Limit cycle
Homoclinic tangle
Bifurcation
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Andronov-Hopf bifurcation in Brusselator{
ẋ1 = a− (b + 1)x1 + x2

1x2
ẋ2 = bx1 − x2

1x2
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A strange attractor in the Rössler system


ẋ1 = −x2 − x3
ẋ2 = x1 + Ax2
ẋ3 = Bx1 − Cx3 + x1x3

A = 0.36
B = 0.4
C = 0.4
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Complexity of dynamical systems

Most differential equations admit neither exact analytic solution nor a
reasonably complete qualitative analysis.

V.I. Arnold, Geometrical Methods in the Theory of Ordinary
Differential Equations
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Bifurcation set of the food chain model

r

K

Kuznetsov, De Feo & Rinaldi [2001]
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Normal forms for oscillatory instability

I Andronov-Hopf bifurcation:{
ẋ1 = αx1 − x2 + l1x1(x2

1 + x2
2)

ẋ2 = x1 + αx2 + l1x2(x2
1 + x2

2)

or {
ρ̇ = ρ(α+ l1ρ2)

θ̇ = 1
I Bautin bifurcation:{

ẋ1 = α1x1 − x2 + α2x1(x2
1 + x2

2) + l2x1(x2
1 + x2

2)
2

ẋ2 = x1 + α1x2 + α2x2(x2
1 + x2

2) + l2x2(x2
1 + x2

2)
2

or {
ρ̇ = ρ(α1 + α2ρ

2 + l2ρ4)

θ̇ = 1
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Bautin bifurcation diagram (l1 < 0)
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Continuation of equilibria in ẋ = f (x, α)

F(U) = 0, F : Rn+1 → Rn

where

U = (x, α),
F(U) = f (x, α)

2 1321

α

x

f(x, α) = 0
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Continuation of folds


f (x, α) = 0

fx(x, α)v = 0
〈w, v〉 − 1 = 0{

f (x, α) = 0
det(fx(x, α)) = 0{
f (x, α) = 0
g(x, α) = 0

where

(
fx(x, α) u

wT 0

)(
v
g

)
=

(
0
1

)

Γ

T2
0

x

α2T1
α1

v
f(x, α) = 0
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Generation I: LOCBIF (1991-1993)
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Generation II: CONTENT (1993-1998)
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Generation III: MATCONT (2000- )
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Double impulses in FitzHugh-Nagumo model


∂V
∂t

=
∂2V
∂x2 − f (V)−W

∂W
∂t

= b(V − γW)

⇒



dv
dξ

= u

du
dξ

= cu + f (v) + w

dw
dξ

=
b
c

u(v− γw)

V(t, x) = v(ξ), W(t, x) = w(ξ), ξ = x + ct

c
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Bifurcations of neural field models

∂V(t, x)
∂t

= −αV(t, x)+
∫

Ω
w(x, x′)f

(
V
(

t − τ0 −
|x− x′|

c
, x′
))

dx′

Andronov-Hopf bifurcation:
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