Measure and Integration Exercise 3, 2014-15

- 1. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra on \mathbb{R} . Show that any monotonically increasing or decreasing function $f : \mathbb{R} \to \mathbb{R}$ is Borel measurable i.e. $\mathcal{B}(\mathbb{R}) \setminus \mathcal{B}(\mathbb{R})$ measurable. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra on \mathbb{R} .
 - (a) Show that any monotonically increasing or decreasing function $f : \mathbb{R} \to \mathbb{R}$ is Borel measurable i.e. $\mathcal{B}(\mathbb{R}) \setminus \mathcal{B}(\mathbb{R})$ measurable.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ 2^{-k} & \text{if } x \in [k, k+1), \ k \in \mathbb{Z}, \ k \ge 0. \end{cases}$$

Show that f is measurable, and determine the values of $\lambda(\{f > 1\}), \lambda(\{f < 1\})$ and $\lambda(\{1/4 \leq f < 1\})$. Find a sequence of simple functions $(f_k) \subseteq \mathcal{E}^+(\mathcal{B}(\mathbb{R}))$ such that $f_j \nearrow f$.