Measure and Integration Exercise 3, 2012-13

- 1. Let (X, \mathcal{A}, μ) be a measure space, and let $(X, \mathcal{A}^*, \overline{\mu})$ be its completion (see exercise 4.13, p.29).
 - (a) Show that for any $f \in \mathcal{E}^+(\mathcal{A}^*)$, there exists a function $g \in \mathcal{E}^+(\mathcal{A})$ such that $g(x) \leq f(x)$ for all $x \in X$, and

$$\overline{\mu}(\{x \in X : f(x) \neq g(x)\}) = 0.$$

(b) Using Theorem 8.8, show that if $u \in \mathcal{M}^+_{\overline{\mathbb{R}}}(\mathcal{A}^*)$, then there exists $w \in \mathcal{M}^+_{\overline{\mathbb{R}}}(\mathcal{A})$ such that $w(x) \leq u(x)$ for all $x \in X$, and

$$\overline{\mu}(\{x \in X : w(x) \neq u(x)\}) = 0.$$