Measure and Integration Exercise 3, 2012-13

1. Let (X, \mathcal{A}, μ) be a measure space, and let $\left(X, \mathcal{A}^{*}, \bar{\mu}\right)$ be its completion (see exercise 4.13, p.29).
(a) Show that for any $f \in \mathcal{E}^{+}\left(\mathcal{A}^{*}\right)$, there exists a function $g \in \mathcal{E}^{+}(\mathcal{A})$ such that $g(x) \leq f(x)$ for all $x \in X$, and

$$
\bar{\mu}(\{x \in X: f(x) \neq g(x)\})=0 .
$$

(b) Using Theorem 8.8 , show that if $u \in \mathcal{M}_{\overline{\mathbb{R}}}^{+}\left(\mathcal{A}^{*}\right)$, then there exists $w \in \mathcal{M}_{\overline{\mathbb{R}}}^{+}(\mathcal{A})$ such that $w(x) \leq u(x)$ for all $x \in X$, and

$$
\bar{\mu}(\{x \in X: w(x) \neq u(x)\})=0 .
$$

