Measure and Integration Solution Exercise 4, 2015-16

- 1. Let (X, \mathcal{A}, μ) be a measure space and $f \in \mathcal{L}^1_{\mathbb{R}}(\mu)$. Define $A_0 = \{x \in X : f(x) = 0\}$, $A_{\infty} = \{x \in X : |f(x)| = \infty\}$, and $A_n = \{x \in X : 1/n \leq |f(x)| < n\}$, for $n \geq 1$. Set $A = \bigcup_{n=1}^{\infty} A_n$.
 - (a) Show that $\int_X |f| d\mu = \int_A |f| d\mu$. (2 pts)
 - (b) Show that for every $\epsilon > 0$, there exists a positive integer N such that

$$\mu(A_N) < \infty \text{ and } \int_{A_N^c} |f| \, d\mu < \epsilon.$$

(3 pts)

2. Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X) = 1$) and let $\{f_n\}$ be a sequence in $\mathcal{L}^1(\mu)$ such that $\int_X |f_n| d\mu = n$ for all $n \ge 1$. Let

$$A_n = \{x : |f_n(x) - \int_X f_n d\mu| \ge n^3\}.$$

- (a) Show that $\mu\left(\bigcap_{m\geq 1}\bigcup_{n\geq m}A_n\right)=0.$ (2 pts)
- (b) Use part (a) to show that for every $\epsilon > 0$ there exists $m_0 \ge 1$ such that

 $\mu\{x \in X : |f_n(x)| < n^3 + n, \text{ for all } n \ge m_0\} > 1 - \epsilon.$

(3 pts)