Measure and Integration Solution Exercise 4, 2015-16

1. Let (X, \mathcal{A}, μ) be a measure space and $f \in \mathcal{L}_{\mathbb{R}}^{1}(\mu)$. Define $A_{0}=\{x \in X: f(x)=0\}$, $A_{\infty}=\{x \in X:|f(x)|=\infty\}$, and $A_{n}=\{x \in X: 1 / n \leq|f(x)|<n\}$, for $n \geq 1$. Set $A=\bigcup_{n=1}^{\infty} A_{n}$.
(a) Show that $\int_{X}|f| d \mu=\int_{A}|f| d \mu$. (2 pts)
(b) Show that for every $\epsilon>0$, there exists a positive integer N such that

$$
\mu\left(A_{N}\right)<\infty \text { and } \int_{A_{N}^{c}}|f| d \mu<\epsilon .
$$

(3 pts)
2. Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X)=1)$ and let $\left\{f_{n}\right\}$ be a sequence in $\mathcal{L}^{1}(\mu)$ such that $\int_{X}\left|f_{n}\right| d \mu=n$ for all $n \geq 1$. Let

$$
A_{n}=\left\{x:\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| \geq n^{3}\right\} .
$$

(a) Show that $\mu\left(\bigcap_{m \geq 1} \bigcup_{n \geq m} A_{n}\right)=0$. (2 pts)
(b) Use part (a) to show that for every $\epsilon>0$ there exists $m_{0} \geq 1$ such that

$$
\begin{equation*}
\mu\left\{x \in X:\left|f_{n}(x)\right|<n^{3}+n, \text { for all } n \geq m_{0}\right\}>1-\epsilon . \tag{3pts}
\end{equation*}
$$

