Measure and Integration Exercise 5, 2015-16

1. Consider the measure space $([0, \infty), \mathcal{B}([0, \infty)), \lambda)$, where $\mathcal{B}([0, \infty))$ is the restriction of the Borel σ -algebra on $[0, \infty)$, and λ is the restriction of Lebesgue measure on $\mathcal{B}([0, \infty))$. Define $f : [0, \infty) \to \mathbb{R}$ by

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \mathbf{1}_{[n-1,n)}(x).$$

- (a) Show that f is $\mathcal{B}([0,\infty))/\mathcal{B}(\mathbb{R})$ measurable and that $f \notin \mathcal{L}^1(\lambda)$. (2 pts)
- (b) Show that the improper Riemann-integral $(R) \int_0^\infty f(x) dx$ exists and is finite. Give an argument why parts (a) and (b) do not contradict Corollary 11.9. (2 pts)
- 2. Let (X, \mathcal{A}, μ) be a measure space, and $f \in \mathcal{L}^p_{\mathbb{R}}(\mu)$ for some $p \in [1, \infty)$. For $n \ge 1$, define $f_n = \max\left(\min(f, n), -n\right)$. Show that for every $\epsilon > 0$ there exists an integer $n \ge 1$ such that $\int |f - f_n|^p < \epsilon$. (3 pts)
- 3. Consider the measure space $([0,1], \mathcal{B}([0,1]), \lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ -algebra on [0,1], and λ Lebesgue measure on [0,1]. Let $p \in (1,\infty)$ and let q be the conjugate of p, i.e. $\frac{1}{p} + \frac{1}{q}$. Show that if $f \in \mathcal{L}^p(\lambda)$, then

$$\lim_{n \to \infty} n^{1/q} \int_{[0,1/n]} |f| \, d\lambda = 0.$$

(3 pts)