Extra Practice Final Measure and Integration 2014-15

(1) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and let $f \in \mathcal{L}^1(\lambda)$ is bounded. Show that the function g defined by

$$g(t) = \int_{\mathbb{R}} \frac{f(x)}{x^2 + t^2} \, d\lambda(x),$$

is bounded and continuous on the interval $(1,\infty)$

- (2) Consider the measure space $([0,1]\mathcal{B}([0,1]),\lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to [0,1], and λ is the restriction of Lebesgue measure to [0,1]. Let E_1, \dots, E_m be a collection of Borel measurable subsets of [0,1] such that every element $x \in [0,1]$ belongs to at least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \geq \frac{n}{m}$.
- (3) Let (X, \mathcal{F}, μ) be a measure space, and $1 < p, q < \infty$ conjugate numbers, i.e. 1/p + 1/q = 1. Show that if $f \in \mathcal{L}^p(\mu)$, then there exists $g \in \mathcal{L}^q(\mu)$ such that $||g||_q = 1$ and $\int fg \, d\mu = ||f||_p$.
- (4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^1(\lambda)$ and define for h > 0, the function $f_h(x) = \frac{1}{h} \int_{[x,x+h]} f(t) d\lambda(t)$.
 - (a) Show that f_h is Borel measurable for all h > 0.
 - (b) Show that $f_h \in \mathcal{L}^1(\lambda)$ and $||f_h||_1 \le ||f||_1$.
- (5) Let (X, \mathcal{A}, μ) be a σ -finite measure space and (A_i) a sequence in \mathcal{A} such that $\lim_{n\to\infty} \mu(A_n) = 0$.
 - (a) Show that $\mathbf{1}_{A_n} \xrightarrow{\mu} 0$, i.e. the sequence $(\mathbf{1}_{A_n})$ converges to 0 in measure.
 - (b) Show that for any $u \in \mathcal{L}^1(\mu)$, one has $u \mathbf{1}_{A_n} \xrightarrow{\mu} 0$.
 - (c) Show that for any $u \in \mathcal{L}^1(\mu)$, one has

$$\sup_{n} \int_{\{|u|\mathbf{1}_{A_{n}} > |u|\}} |u|\mathbf{1}_{A_{n}} \, d\mu = 0.$$

- (d) Show that $\lim_{n\to\infty} \int_{A_n} u \, d\mu = 0$.
- (6) Let (X, \mathcal{A}, μ) be a measure space. Show that μ is σ -finite if and only if there exists $f \in L^1(\mu)$ which is **strictly** positive.