Extra Opgaven Inleiding Financiele Wiskunde, 2011-12

1. Consider the binomial model with $u=2^{1}, d=2^{-1}$, and $r=1 / 4$, and consider a perpetual American put option with $S_{0}=10$ and $K=12$. Suppose that Alice and Bob each buy such an option
(a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0 ?
(b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0 ?
(c) What is the probability that the price reaches 20 euros for the first time at time $n=5$?
2. Let M_{0}, M_{1}, \cdots be the symmetric random walk. Define for $a \in Z, M_{n}^{a}=a+M_{n}$. The process $M_{0}^{a}, M_{1}^{a}, \cdots$ is called the symmetric random walk starting in a. Let $b \in Z$ be such that $n+b-a$ is even.
(a) Let $N_{n}(a, b)$ be the number of paths of length n starting in a and ending in b. Show that $N_{n}(a, b)=\binom{n}{\frac{1}{2}(n+b-a)}$. Conclude that

$$
P\left(M_{n}^{a}=b\right)=\binom{n}{\frac{1}{2}(n+b-a)} \frac{1}{2^{n}} .
$$

(b) Let $N_{n}^{0}(a, b)$ be the number of paths of length n starting in a and ending in b that cross the x-axis at least once. Use the reflection principle to prove that if $a, b>0$, then $N_{n}^{0}(a, b)=N_{n}(-a, b)$.
(c) Let $b>0$, using part (b) show that the number of paths of length n starting in 0 which does not cross the x-axis (except at the starting point) equals $\frac{b}{n} N_{n}(0, b)$.
(d) Use part (c) to prove that if $b>0$, then

$$
P\left(M_{n}=b, \min _{1 \leq k \leq n-1} M_{k}>0\right)=\frac{b}{n} P\left(M_{n}=b\right) .
$$

