

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Extra Opgaven Inleiding Financiele Wiskunde, 2011-12

- 1. Consider the binomial model with $u = 2^1$, $d = 2^{-1}$, and r = 1/4, and consider a perpetual American put option with $S_0 = 10$ and K = 12. Suppose that Alice and Bob each buy such an option
 - (a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0?
 - (b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0?
 - (c) What is the probability that the price reaches 20 euros for the first time at time n = 5?
- 2. Let M_0, M_1, \cdots be the symmetric random walk. Define for $a \in Z$, $M_n^a = a + M_n$. The process M_0^a, M_1^a, \cdots is called the symmetric random walk starting in a. Let $b \in Z$ be such that n + b - a is even.
 - (a) Let $N_n(a, b)$ be the number of paths of length n starting in a and ending in b. Show that $N_n(a, b) = \binom{n}{\frac{1}{2}(n+b-a)}$. Conclude that

$$P(M_n^a = b) = {\binom{n}{\frac{1}{2}(n+b-a)}} \frac{1}{2^n}.$$

- (b) Let $N_n^0(a, b)$ be the number of paths of length n starting in a and ending in b that cross the x-axis at least once. Use the reflection principle to prove that if a, b > 0, then $N_n^0(a, b) = N_n(-a, b)$.
- (c) Let b > 0, using part (b) show that the number of paths of length n starting in 0 which does not cross the x-axis (except at the starting point) equals $\frac{b}{n}N_n(0,b)$.
- (d) Use part (c) to prove that if b > 0, then

$$P(M_n = b, \min_{1 \le k \le n-1} M_k > 0) = \frac{b}{n} P(M_n = b).$$