OefenDeeltentamen 1 Inleiding Financiele Wiskunde, 2010

1. Consider a 2-period binomial model with $S_{0}=10, u=1.25, d=0.75$, and $r=0.2$. Suppose the real probability measure P satisfies $P(H)=p=0.6=1-P(T)$.
(a) Consider an option with payoff $V_{2}=\left(\max \left(S_{1}, S_{2}\right)-11\right)^{+}$. Determine the price V_{n} at time $n=0,1$.
(b) Suppose $\omega_{1} \omega_{2}=H H$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ so that the corresponding wealth process satisfies $X_{2}(H H)=V_{2}(H H)$. Describe the corresponding strategy.
(c) Determine explicitly the state price density process

$$
\frac{Z_{0}}{(1+r)^{0}}, \frac{Z_{1}}{(1+r)}, \frac{Z_{2}}{(1+r)^{2}},
$$

where

$$
Z_{2}\left(\omega_{1} \omega_{2}\right)=Z\left(\omega_{1} \omega_{2}\right)=\frac{\widetilde{P}\left(\omega_{1} \omega_{2}\right)}{P\left(\omega_{1} \omega_{2}\right)}
$$

with \widetilde{P} the risk neutral probability measure, and $Z_{i}=E_{i}(Z), i=0,1$.
(d) Consider the utility function $U(x)=\ln x^{2}$. Find a random variable X (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=10$.
2. Consider the N-period binomial model. Consider the random variables X_{1}, \ldots, X_{N} on (Ω, P) defined by

$$
X_{i}\left(\omega_{1} \ldots \omega_{N}\right)= \begin{cases}2, & \text { if } \omega_{i}=H \\ 0, & \text { if } \omega_{i}=T\end{cases}
$$

(a) Assume $P(H)=1 / 2=P(T)$. Let $Z_{0}=1$, and $Z_{n}=X_{1} \ldots X_{n}, n=$ $1,2, \ldots, N$. Prove that the process $Z_{0}, Z_{1}, \ldots, Z_{N}$ is a martingale w.r.t. P.
(b) Suppose $P(H)=1 / 4=1-P(T)$. Show that the process $Z_{0}, Z_{1}, \ldots, Z_{N}$ in part (a) is now a supermartingale w.r.t. P, while the process $Z_{0}^{2}, Z_{1}^{2}, \ldots, Z_{N}^{2}$ is a martingale w.r.t. P.
3. Consider the N-period binomial model.
(a) Assume $X_{0}, X_{1}, \ldots, X_{N}$ is a Markov process w.r.t. the risk neutral measure \widetilde{P}. Consider an option with payoff $V_{N}=X_{N}^{2}$. Show that for each $n=0,1, \ldots, N-$ 1 , there exists a function g_{n} such that the price at time n is given by $V_{n}=$ $g_{n}\left(X_{n}\right)$.
(b) Suppose Y is a random variable on Ω. Define a process

$$
Y_{0}, Y_{1}, \ldots, Y_{N}
$$

by $Y_{n}=\widetilde{E}_{n}(Y)$. Let

$$
Z_{0}, Z_{1}, \ldots, Z_{N}
$$

be the Radon-Nikodym derivative process of \widetilde{P} w.r.t. P, so $Z_{n}=E_{n}(Z)$, with Z the Radon-Nikodym derivative of \widetilde{P} w.r.t. P. Show that the process

$$
Z_{0} Y_{0}, Z_{1} Y_{1}, \ldots, Y_{N} Z_{N}
$$

is a martingale w.r.t. P. (Hint: use Lemma 3.2.6)

