OefenDeeltentamen 2 Inleiding Financiele Wiskunde, 2010

1. Consider a 2-period binomial model with $S_{0}=110, u=1.1, d=.9$, and $r=0.05$. Consider an American Put option with expiration $N=2$ and strike price $K=110$.
(a) Determine the intrinsic value process G_{0}, G_{1}, G_{2}.
(b) Determine the price V_{n} at time $n=0,1$ of the American put option.
(c) Determine the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
(d) Suppose $\omega_{1} \omega_{2}=H T$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ and the corresponding values of the wealth process X_{0} and $X_{1}(H)$. Check that $X_{2}(H T)=V_{2}(H T)$.
(e) Suppose $\omega_{1} \omega_{2}=T T$. find $\Delta_{1}(T)$. Show that if the buyer exercises at time 1 , then $X_{1}(T)=11$, and if the buyer exercises at time 2, then $X_{2}(T T)=20.9$.
2. Consider the binomial model with $u=2^{1}, d=2^{-1}$, and $r=1 / 4$, and consider a perpetual American put option with $S_{0}=10$ and $K=12$. Suppose that Alice and Bob each buy such an option
(a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0 ?
(b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0 ?
(c) What is the probability that the price reaches 20 euros for the first time at time $n=5$?
3. Consider the N-period Binomial model with risk neutral probability measure \widetilde{P}. Suppose $X_{0}, X_{1}, \cdots, X_{N}$ is an adapted process satisfying $X_{i}>-1$ for all $i=$ $0,1, \cdots, N$. Define a process $Y_{0}, Y_{1}, \cdots, Y_{N}$ by

$$
Y_{0}=1, \quad \text { and } Y_{n}=\frac{1}{\left(1+X_{0}\right) \cdots\left(1+X_{n-1}\right)}, n=1, \cdots, N .
$$

(a) Let $Z_{n}=\widetilde{E}_{n}\left[\frac{Y_{N}}{Y_{n}}\right], n=0,1, \cdots, N$. Show that the process $Y_{0} Z_{0}, Y_{1} Z_{1}, \cdots, Y_{N} Z_{N}$ is a martingale with respect to \widetilde{P}.
(b) Let $\Delta_{0}, \cdots, \Delta_{N-1}$ be an adapted process, and W_{0} a fixed positive real number. Define for $n=0,1, \cdots, N-1$,

$$
W_{n+1}=\Delta_{n} Z_{n+1}+\left(1+X_{n}\right)\left(W_{n}-\Delta_{n} Z_{n}\right) .
$$

Show that the process

$$
Y_{0} W_{0}, Y_{1} W_{1}, \cdots, Y_{N} W_{N}
$$

is a martingale with respect to \widetilde{P}.
4. Let M_{0}, M_{1}, \cdots be the symmetric random walk. Define for $a \in \mathbb{Z}, M_{n}^{a}=a+M_{n}$. The process $M_{0}^{a}, M_{1}^{a}, \cdots$ is called the symmetric random walk starting in a. Let $b \in \mathbb{Z}$ be such that $n+b-a$ is even.
(a) Let $N_{n}(a, b)$ be the number of paths of length n starting in a and ending in b. Show that $N_{n}(a, b)=\binom{n}{\frac{1}{2}(n+b-a)}$. Conclude that

$$
P\left(M_{n}^{a}=b\right)=\binom{n}{\frac{1}{2}(n+b-a)} \frac{1}{2^{n}} .
$$

(b) Let $N_{n}^{0}(a, b)$ be the number of paths of length n starting in a and ending in b that cross the x-axis at least once. Use the reflection principle to prove that if $a, b>0$, then $N_{n}^{0}(a, b)=N_{n}(-a, b)$.
(c) Let $b, n>0$ be two integers satisfying $n+b$ is even. Using part (b) show that the number of paths of length n starting in 0 which does not cross the x-axis (except at the starting point) equals $\frac{b}{n} N_{n}(0, b)$.
(d) Use part (c) to prove that if $b>0$, then

$$
P\left(M_{n}=b, \min _{1 \leq k \leq n-1} M_{k}>0\right)=\frac{b}{n} P\left(M_{n}=b\right) .
$$

