

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

OefenDeeltentamen 2 Inleiding Financiele Wiskunde, 2010

- 1. Consider a 2-period binomial model with $S_0 = 110$, u = 1.1, d = .9, and r = 0.05. Consider an American Put option with expiration N = 2 and strike price K = 110.
 - (a) Determine the intrinsic value process G_0, G_1, G_2 .
 - (b) Determine the price V_n at time n = 0, 1 of the American put option.
 - (c) Determine the optimal exercise time $\tau^*(\omega_1\omega_2)$ for all $\omega_1\omega_2$.
 - (d) Suppose $\omega_1\omega_2 = HT$, find the values of the portfolio process $\Delta_0, \Delta_1(H)$ and the corresponding values of the wealth process X_0 and $X_1(H)$. Check that $X_2(HT) = V_2(HT)$.
 - (e) Suppose $\omega_1\omega_2 = TT$. find $\Delta_1(T)$. Show that if the buyer exercises at time 1, then $X_1(T) = 11$, and if the buyer exercises at time 2, then $X_2(TT) = 20.9$.
- 2. Consider the binomial model with $u = 2^1$, $d = 2^{-1}$, and r = 1/4, and consider a perpetual American put option with $S_0 = 10$ and K = 12. Suppose that Alice and Bob each buy such an option
 - (a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0?
 - (b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0?
 - (c) What is the probability that the price reaches 20 euros for the first time at time n = 5?
- 3. Consider the N-period Binomial model with risk neutral probability measure P. Suppose X_0, X_1, \dots, X_N is an adapted process satisfying $X_i > -1$ for all $i = 0, 1, \dots, N$. Define a process Y_0, Y_1, \dots, Y_N by

$$Y_0 = 1$$
, and $Y_n = \frac{1}{(1 + X_0) \cdots (1 + X_{n-1})}$, $n = 1, \cdots, N$.

- (a) Let $Z_n = \widetilde{E}_n \left[\frac{Y_N}{Y_n} \right]$, $n = 0, 1, \dots, N$. Show that the process $Y_0 Z_0, Y_1 Z_1, \dots, Y_N Z_N$ is a martingale with respect to \widetilde{P} .
- (b) Let $\Delta_0, \dots, \Delta_{N-1}$ be an adapted process, and W_0 a fixed positive real number. Define for $n = 0, 1, \dots, N-1$,

$$W_{n+1} = \Delta_n Z_{n+1} + (1 + X_n)(W_n - \Delta_n Z_n).$$

Show that the process

$$Y_0W_0, Y_1W_1, \cdots, Y_NW_N$$

is a martingale with respect to \widetilde{P} .

- 4. Let M_0, M_1, \cdots be the symmetric random walk. Define for $a \in \mathbb{Z}$, $M_n^a = a + M_n$. The process M_0^a, M_1^a, \cdots is called the symmetric random walk starting in a. Let $b \in \mathbb{Z}$ be such that n + b - a is even.
 - (a) Let $N_n(a, b)$ be the number of paths of length n starting in a and ending in b. Show that $N_n(a, b) = \binom{n}{\frac{1}{2}(n+b-a)}$. Conclude that $P(M_n^a = b) = \binom{n}{\frac{1}{2}(n+b-a)} \frac{1}{2^n}$.
 - (b) Let $N_n^0(a, b)$ be the number of paths of length *n* starting in *a* and ending in *b* that cross the *x*-axis at least once. Use the reflection principle to prove that if a, b > 0, then $N_n^0(a, b) = N_n(-a, b)$.
 - (c) Let b, n > 0 be two integers satisfying n + b is even. Using part (b) show that the number of paths of length n starting in 0 which does not cross the x-axis (except at the starting point) equals $\frac{b}{n}N_n(0,b)$.
 - (d) Use part (c) to prove that if b > 0, then

$$P(M_n = b, \min_{1 \le k \le n-1} M_k > 0) = \frac{b}{n} P(M_n = b).$$