Universiteit Utrecht Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Uitwerkingen Oefen Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

- 1. Consider a 2-period binomial model with $S_0 = 100$, u = 1.2, d = 0.7, and r = 0.1. Consider now an Asian American put option with expiration N = 2, and intrinsic value $G_n = 95 - \frac{S_0 + \cdots + S_n}{n+1}$, n = 0, 1, 2.
 - (a) Determine the price V_n at time n = 0, 1 of this American option.
 - (b) Find the optimal exercise time $\tau^*(\omega_1\omega_2)$ for all $\omega_1\omega_2$.
 - (c) Suppose it is possible to buy this option at a price $C > V_0$, where V_0 is your answer from part (a). Construct an explicit arbitrage strategy.
- 2. Consider the binomial model with up factor u = 2, down factor d = 1/2 and interest rate r = 1/4. Consider a perpetual American put option with $S_0 = 8$ and strike price K = 10.
 - (a) Suppose the buyer of the option uses the strategy of exercising the first time the price drops to 1 euro. What is then the price at time 0 of such an option?
 - (b) What is the probability that the price reaches 16 euros for the first time at time n = 5?
- 3. Consider an American option with expiration date N, intrinsic value process G_0, G_1, \dots, G_N , and price process V_0, V_1, \dots, V_N . Note that

$$V_n = \max_{\tau \in \mathcal{S}_n} \widetilde{E}_n \left[\mathbf{1}_{\{\tau \le N\}} \frac{G_\tau}{(1+r)^{\tau-n}} \right]$$

for $n = 0, 1, \dots, N$, where r is the interest rate.

(a) For $n = 0, 1, \dots, N$, let $\tau_n^* \in S_n$ be given by $\tau_n^* = \inf\{k \ge n : V_k = G_k\}$, if the infimum exists, otherwise $\tau_n^* = \infty$. Prove that

$$\left\{\frac{V_{m\wedge\tau_n^*}}{(1+r)^{m\wedge\tau_n^*}}, \ m=n,\cdots,N\right\}$$

is a martingale.

(b) Use part (a) to show τ_n^* is an optimal stopping time for V_n . i.e.

$$V_n = \widetilde{E}_n \left[\mathbf{1}_{\{\tau_n^* \le N\}} \frac{G_{\tau_n^*}}{(1+r)^{\tau_n^* - n}} \right].$$

4. Consider a 3-period (non constant interest rate) binomial model with interest rate process R_0, R_1, R_2 defined by

$$R_0 = 0, R_1(\omega_1) = 0.02f(\omega_1), R_2(\omega_1, \omega_2) = 0.02f(\omega_1)f(\omega_2)$$

where f(H) = 3, and f(T) = 2. Suppose that the risk neutral measure is given by $\tilde{P}(HHH) = \tilde{P}(HTT) = 1/10$, $\tilde{P}(HHT) = \tilde{P}(HTH) = 1/5$, $\tilde{P}(THH) = \tilde{P}(THT) = 1/15$, $\tilde{P}(TTH) = \tilde{P}(TTT) = 2/15$.

- (a) Calculate the time one price $B_{1,3}$ of a zero coupon bond with maturity m = 3.
- (b) Consider a 3-period interest rate swap. Find the 3-period swap rate SR_3 , i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
- (c) Consider a 3-period Cap that makes payments $C_n = (R_{n-1} 0.1)^+$ at time n = 1, 2, 3. Find Cap₃, the price of this Cap.
- 5. Let M_0, M_1, \dots , be the symmetric random walk, i.e. $M_0 = 0$, and $M_n = \sum_{i=1}^n X_i$, where

$$X_i = \begin{cases} 1, & \text{if } \omega_i = H, \\ -1, & \text{if } \omega_i = T, \end{cases}$$

for $i \ge 1$. Let $m \ge 2$ be an integer, and let $k \in \{1, \dots, m-1\}$. Define $Y_0 = k$, and

$$Y_{n+1} = (Y_n + X_{n+1})\mathbb{I}_{\{Y_n \notin \{0,m\}\}} + Y_n \mathbb{I}_{\{Y_n \in \{0,m\}\}},$$

for $n \ge 0$.

- (a) Show that Y_0, Y_1, \cdots is a martingale.
- (b) Let $T = \inf\{n \ge 1 : Y_n \in \{0, m\}\}$. Using the the Optional Sampling Theorem show that $E(Y_T) = E(Y_0) = k$.
- (c) Prove that $P(Y_T = 0) = \frac{m-k}{m}$.