Uitwerkingen Oefen Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

1. Consider a 2-period binomial model with $S_{0}=100, u=1.2, d=0.7$, and $r=0.1$. Consider now an Asian American put option with expiration $N=2$, and intrinsic value $G_{n}=95-\frac{S_{0}+\cdots+S_{n}}{n+1}, n=0,1,2$.
(a) Determine the price V_{n} at time $n=0,1$ of this American option.
(b) Find the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
(c) Suppose it is possible to buy this option at a price $C>V_{0}$, where V_{0} is your answer from part (a). Construct an explicit arbitrage strategy.
2. Consider the binomial model with up factor $u=2$, down factor $d=1 / 2$ and interest rate $r=1 / 4$. Consider a perpetual American put option with $S_{0}=8$ and strike price $K=10$.
(a) Suppose the buyer of the option uses the strategy of exercising the first time the price drops to 1 euro. What is then the price at time 0 of such an option?
(b) What is the probability that the price reaches 16 euros for the first time at time $n=5$?
3. Consider an American option with expiration date N, intrinsic value process $G_{0}, G_{1}, \cdots, G_{N}$, and price process $V_{0}, V_{1}, \cdots, V_{N}$. Note that

$$
V_{n}=\max _{\tau \in \mathcal{S}_{n}} \widetilde{E}_{n}\left[\mathbf{1}_{\{\tau \leq N\}} \frac{G_{\tau}}{(1+r)^{\tau-n}}\right],
$$

for $n=0,1, \cdots, N$, where r is the interest rate.
(a) For $n=0,1, \cdots, N$, let $\tau_{n}^{*} \in \mathcal{S}_{n}$ be given by $\tau_{n}^{*}=\inf \left\{k \geq n: V_{k}=G_{k}\right\}$, if the infimum exists, otherwise $\tau_{n}^{*}=\infty$. Prove that

$$
\left\{\frac{V_{m \wedge \tau_{n}^{*}}}{(1+r)^{m \wedge \tau_{n}^{*}}}, m=n, \cdots, N\right\}
$$

is a martingale.
(b) Use part (a) to show τ_{n}^{*} is an optimal stopping time for V_{n}. i.e.

$$
V_{n}=\widetilde{E}_{n}\left[\mathbf{1}_{\left\{\tau_{n}^{*} \leq N\right\}} \frac{G_{\tau_{n}^{*}}}{(1+r)^{\tau_{n}^{*}-n}}\right] .
$$

4. Consider a 3-period (non constant interest rate) binomial model with interest rate process R_{0}, R_{1}, R_{2} defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=0.02 f\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=0.02 f\left(\omega_{1}\right) f\left(\omega_{2}\right)
$$

where $f(H)=3$, and $f(T)=2$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H T T)=1 / 10, \widetilde{P}(H H T)=\widetilde{P}(H T H)=1 / 5, \widetilde{P}(T H H)=$ $\widetilde{P}(T H T)=1 / 15, \widetilde{P}(T T H)=\widetilde{P}(T T T)=2 / 15$.
(a) Calculate the time one price $B_{1,3}$ of a zero coupon bond with maturity $m=3$.
(b) Consider a 3 -period interest rate swap. Find the 3 -period swap rate $S R_{3}$, i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period Cap that makes payments $C_{n}=\left(R_{n-1}-0.1\right)^{+}$at time $n=1,2,3$. Find Cap_{3}, the price of this Cap.
5. Let M_{0}, M_{1}, \cdots, be the symmetric random walk, i.e. $M_{0}=0$, and $M_{n}=\sum_{i=1}^{n} X_{i}$, where

$$
X_{i}= \begin{cases}1, & \text { if } \omega_{i}=H \\ -1, & \text { if } \omega_{i}=T\end{cases}
$$

for $i \geq 1$. Let $m \geq 2$ be an integer, and let $k \in\{1, \cdots, m-1\}$. Define $Y_{0}=k$, and

$$
Y_{n+1}=\left(Y_{n}+X_{n+1}\right) \mathbb{I}_{\left\{Y_{n} \notin\{0, m\}\right\}}+Y_{n} \mathbb{I}_{\left\{Y_{n} \in\{0, m\}\right\}},
$$

for $n \geq 0$.
(a) Show that Y_{0}, Y_{1}, \cdots is a martingale.
(b) Let $T=\inf \left\{n \geq 1: Y_{n} \in\{0, m\}\right\}$. Using the the Optional Sampling Theorem show that $E\left(Y_{T}\right)=E\left(Y_{0}\right)=k$.
(c) Prove that $P\left(Y_{T}=0\right)=\frac{m-k}{m}$.

