Universiteit Utrecht

Mathematisch Instituut



Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

## Practice Final Measure and Integration 2012-13

- 1. Let  $\mu$  and  $\nu$  be two measures on the measure space  $(E, \mathcal{B})$  such that  $\mu(A) \leq \nu(A)$  for all  $A \in \mathcal{B}$ .
  - (a) Show that if f is any non-negative measurable function on  $(E, \mathcal{B})$ , then  $\int_E f d\mu \leq \int_E f d\nu$ .
  - (b) Prove that if  $\nu$  is a finite measure, then  $\mathcal{L}^2(\nu) \subseteq \mathcal{L}^1(\mu)$ .
- 2. Let 0 < a < b. Prove with the help of Tonelli's theorem (applied to the function  $f(x,y) = e^{-xt}$ ) that  $\int_{[0,\infty)} (e^{-at} e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$ , where  $\lambda$  denotes Lebesgue measure.
- 3. Let  $(X, \mathcal{A}, \mu)$  be a  $\sigma$ -finite measure space, and  $(f_j)$  a uniformly integrable sequence of measurable functions. Define  $F_k = \sup_{1 \le j \le k} |f_j|$  for  $k \ge 1$ .
  - (a) Show that for any  $w \in \mathcal{M}^+(\mathcal{A})$ ,

$$\int_{\{F_k > w\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

(b) Show that for every  $\epsilon > 0$ , there exists a  $w_{\epsilon} \in \mathcal{L}^{1}_{+}(\mu)$  such that for all  $k \geq 1$ 

$$\int_X F_k \, d\mu \le \int_X w_\epsilon \, d\mu + k\epsilon.$$

(c) Show that

$$\lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$

- 4. Consider the measure space  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ , where  $\mathcal{B}(\mathbb{R})$  is the Borel  $\sigma$ -algebra, and  $\lambda$  Lebesgue measure.
  - (a) Let  $f \in \mathcal{L}^1(\lambda)$ . Show that for all  $a \in \mathbb{R}$ , one has

$$\int_{\mathbb{R}} f(x-a) d\lambda(x) = \int_{\mathbb{R}} f(x) d\lambda(x) d\lambda$$

(b) Let  $k, g \in \mathcal{L}^1(\lambda)$ . Define  $F : \mathbb{R}^2 \to \mathbb{R}$ , and  $h : \mathbb{R} \to \overline{\mathbb{R}}$  by

$$F(x,y) = k(x-y)g(y).$$

- (i) Show that F is measurable.
- (ii) Show that  $F \in \mathcal{L}^1(\lambda \times \lambda)$ , and

$$\int_{\mathbb{R}\times\mathbb{R}} F(x,y)d(\lambda\times\lambda)(x,y) = \left(\int_{\mathbb{R}} k(x)d\lambda(x)\right)\left(\int_{\mathbb{R}} g(y)d\lambda(y)\right).$$

5. Let  $(X, \mathcal{A})$  be a measurable space, and  $\mu$ ,  $\nu$  two finite measures on  $(X, \mathcal{A})$  with the property that for any  $A \in \mathcal{A}$  with  $\mu(A) = 0$  one has  $\nu(A) = 0$ . Show that for any  $\epsilon > 0$  there is a  $\delta > 0$  such that if  $A \in \mathcal{A}$  with  $\mu(A) < \delta$ , then  $\nu(A) < \epsilon$ . (Hint: give a proof by contradiction )