Measure and Integration: Solutions Practice Final II 2015-16

- (1) Consider a measure space (X, \mathcal{A}, μ) , and let $(f_n)_n$ be a sequence in $\mathcal{L}^2(\mu)$ which is bounded in the \mathcal{L}^2 norm, i.e. there exists a constant C > 0 such that $||f_n||_2 < C$ for all $n \ge 1$.
 - (a) Prove that $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^{1}_{\mathbb{R}}(\mu).$
 - (b) Prove that $\lim_{n \to \infty} \frac{f_n}{n} = 0 \ \mu$ a.e.
- (2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty)), \lambda)$, where $\mathcal{B}((0, \infty))$ is the restriction of the Borel σ -algebra, and λ Lebesgue measure restricted to $(0, \infty)$. Determine the value of

$$\lim_{n \to \infty} \int_{(0,n)} \frac{\cos(x^5)}{1 + nx^2} \, d\lambda(x).$$

- (3) Let (X, \mathcal{A}, μ) be a finite measure space. Suppose $f_n, g_n, f, g \in \mathcal{M}(\mathcal{A})$ $(n \ge 1)$ satisfy the following: (i) $f_n \xrightarrow{\mu} f$,
 - (ii) $g_n \xrightarrow{\mu} g_n$ (iii) $|f_n| \le C$ for all n, where C > 0. Prove that $f_n g_n \xrightarrow{\mu} fg$.
- (4) Let (X, \mathcal{A}) be a measurable space and μ, ν are finite measure on \mathcal{A} . Show that there exists a function $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$\int_{A} (1-f) \, d\mu = \int_{A} f \, d\nu.$$

- (5) Let 0 < a < b. Prove with the help of Tonelli's theorem (applied to the function $f(x,t) = e^{-xt}$) that $\int_{[0,\infty)} (e^{-at} e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$, where λ denotes Lebesgue measure.
- (6) Let (X, \mathcal{A}, μ) be a finite measure space and $f_n, f \in \mathcal{M}(\mathcal{A}), n \ge 1$. Show that f_n converges to f in μ measure **if and only if** $\lim_{n \to \infty} \int \frac{|f_n f|}{1 + |f_n f|} d\mu = 0$.