Practice Final Measure and Integration 2014-15

- (1) Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$. (a) Show that if f is any non-negative measurable function on (E, \mathcal{B}) , then $\int_E f \, d\mu \leq \int_E f \, d\nu$. (b) Prove that if ν is a finite measure, then $\mathcal{L}^2(\nu) \subseteq \mathcal{L}^1(\mu)$.
- (2) Consider the measure space $((0,1], \mathcal{B}((0,1]), \lambda)$, where $\mathcal{B}((0,1])$ and λ are the restrictions of the Borel σ -algebra and Lebesgue measure to the interval (0,1]. Determine the value of

$$\lim_{n \to \infty} \int_{(0,1]} e^{1/x} (1+n^2 x)^{-1} \sin(ne^{-1/x} \, d\lambda(x)).$$

(3) Let (X, \mathcal{F}, μ) be a **finite** measure space. Assume $f \in \mathcal{L}^2(\mu)$ satisfies $0 < ||f||_2 < \infty$, and let $A = \{x \in X : f(x) \neq 0\}$. Show that

$$\mu(A) \ge \frac{(\int f \, d\mu)^2}{\int f^2 \, d\mu}.$$

bigskip

(4) Let $1 \le p < \infty$, and suppose (X, \mathcal{A}, μ) is a finite measure space. Let $(f_n)_n \in \mathcal{L}^p(\mu)$ be a sequence converging to f in μ measure.

(a) Show that

$$\int |f|^p \, d\mu \le \liminf_{n \to \infty} \int |f_n|^p \, d\mu$$

- (b) Show that $\lim_{n \to \infty} n^p \mu(\{|f| > n\}) = 0.$
- (5) Let $E = \{(x, y) : y < x < 1, 0 < y < 1\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \to \mathbb{R}$ be given by $f(x, y) = x^{-3/2} \cos(\frac{\pi y}{2x})$. (a) Show that f is $\lambda \times \lambda$ integrable on E. (b) Define $F: (0, 1) \to \mathbb{R}$ by $F(y) = \int_{(y, 1)} x^{-3/2} \cos(\frac{\pi y}{2x}) d\lambda(x)$. Determine the value of

$$\int F(y)\,d\lambda(y).$$

(6) Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X) = 1$) and let $\{f_n\}$ be a sequence in $\mathcal{L}^1(\mu)$ such that $\int_X |f_n| d\mu = n$ for all $n \ge 1$. Let

$$A_n = \{x : |f_n(x) - \int_X f_n d\mu| \ge n^3\}$$

- (a) Show that $\mu\left(\bigcap_{m\geq 1}\bigcup_{n\geq m}A_n\right)=0.$
- (b) Use part (a) to show that for every $\epsilon > 0$ there exists $m_0 \ge 1$ such that

$$\mu\{x \in X : |f_n(x)| < n^3 + n, \text{ for all } n \ge m_0\} > 1 - \epsilon.$$

(7) Suppose μ and ν are finite measures on the measurable space (X, \mathcal{A}) which have the same null sets. Show that there exists a measurable function f such that $0 < f < \infty \mu$ a.e. and ν a.e. and for all $A \in \mathcal{A}$ one has

$$\nu(A) = \int_A f \, d\mu \text{ and } \mu(A) = \int_A \frac{1}{f} \, d\nu.$$

(8) Let (X, \mathcal{A}, μ) be a finite measure space and $f_n, f \in \mathcal{M}(\mathcal{A}), n \ge 1$. Show that f_n converges to f in μ measure **if and only if** $\lim_{n \to \infty} \int \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0$.