Practice Final Measure and Integration I 12015-16

- 1. Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$.
 - (a) Show that if f is any non-negative measurable function on (E, \mathcal{B}) , then $\int_E f d\mu \leq \int_E f d\nu$.
 - (b) Prove that if ν is a finite measure, then $\mathcal{L}^2(\nu) \subseteq \mathcal{L}^1(\mu)$.
- 2. Consider the measure space $((0, 1], \mathcal{B}((0, 1]), \lambda)$, where $\mathcal{B}((0, 1])$ and λ are the restrictions of the Borel σ -algebra and Lebesgue measure to the interval (0, 1]. Determine the value of

$$\lim_{n \to \infty} \int_{(0,1]} e^{1/x} (1+n^2 x)^{-1} \sin(n e^{-1/x} d\lambda(x)).$$

3. Let (X, \mathcal{F}, μ) be a **finite** measure space. Assume $f \in \mathcal{L}^2(\mu)$ satisfies $0 < ||f||_2 < \infty$, and let $A = \{x \in X : f(x) \neq 0\}$. Show that

$$\mu(A) \ge \frac{(\int f \, d\mu)^2}{\int f^2 \, d\mu}.$$

- 4. Let $E = \{(x, y) : y < x < 1, 0 < y < 1\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = x^{-3/2} \cos(\frac{\pi y}{2x})$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E.
 - (b) Define $F: (0,1) \to \mathbb{R}$ by $F(y) = \int_{(y,1)} x^{-3/2} \cos(\frac{\pi y}{2x}) d\lambda(x)$. Determine the value of

$$\int F(y) \, d\lambda(y).$$

- 5. Let (X, \mathcal{A}, μ) be a σ -finite measure space, and (f_j) a uniformly integrable sequence of measurable functions. Define $F_k = \sup_{1 \le j \le k} |f_j|$ for $k \ge 1$.
 - (a) Show that for any $w \in \mathcal{M}^+(\mathcal{A})$,

$$\int_{\{F_k > w\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

(b) Show that for every $\epsilon > 0$, there exists a $w_{\epsilon} \in \mathcal{L}^{1}_{+}(\mu)$ such that for all $k \geq 1$

$$\int_X F_k \, d\mu \le \int_X w_\epsilon \, d\mu + k\epsilon.$$

(c) Show that

$$\lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$

6. Suppose μ and ν are finite measures on the measurable space (X, \mathcal{A}) which have the same null sets. Show that there exists a measurable function f such that $0 < f < \infty$ μ a.e. and ν a.e. and for all $A \in \mathcal{A}$ one has

$$\nu(A) = \int_A f \, d\mu \text{ and } \mu(A) = \int_A \frac{1}{f} \, d\nu.$$