Measure and Integration: Exercise on Radon-Nikodym Theorem, 2014-15

1. Let (E, \mathcal{B}, ν) be a measure space, and $h : E \to \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A) = \int_A h d\nu$ for $A \in \mathcal{B}$. Show that for every non-negative measurable function $F : E \to \mathbb{R}$ one has

$$\int_E F \, d\mu = \int_E Fh \, d\nu.$$

Conclude that the result is still true for $F \in \mathcal{L}^1(\mu)$ which is not necessarily non-negative.

- 2. Let (X, \mathcal{B}, ν) be a measure space, and suppose $X = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\nu(E_n) < \infty$ for all $n \ge 1$. Define μ on \mathcal{B} by $\mu(B) = \sum_{n=1}^{\infty} 2^{-n} \nu(B \cap E_n) / (\nu(E_n) + 1)$.
 - (a) Prove that μ is a finite measure on (X, \mathcal{B}) .
 - (b) Let $B \in \mathcal{B}$. Prove that $\mu(B) = 0$ if and only if $\nu(B) = 0$.
 - (c) Find explicitly two positive integrable functions f and g such that

$$\mu(A) = \int_A f \, d\nu$$
 and $\nu(A) = \int_A g \, d\mu$,

for all $A \in \mathcal{B}$.

- 3. Suppose μ , ν and λ are finite measures on (X, \mathcal{B}) such that $\mu \ll \nu$ and $\nu \ll \lambda$. Show that $\mu \ll \lambda$ and $\frac{d\mu}{d\lambda} = \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\lambda} \lambda$ a.e.
- 4. Suppose that μ_i , ν_i are finite measures on (X, \mathcal{A}) with $\mu_i \ll \nu_i$ for i = 1, 2. Let $\nu = \nu_1 \times \nu_2$ and $\mu = \mu_1 \times \mu_2$ be the corresponding product measures on $(X \times X, \mathcal{A} \otimes \mathcal{A})$.
 - (a) Show that $\mu \ll \nu$.
 - (b) Prove that $\frac{d\mu}{d\nu}(x,y) = \frac{d\mu_1}{d\nu_1}(x) \cdot \frac{d\mu_2}{d\nu_2}(y) \ \nu$ a.e.