Chapter 13

The Radon-Nikodym
theorem

Suppose f is non-negative and integrable with respect to u. If we
define v by

= / fdp, (13.1)
A

then v is a measure. The only part that needs thought is the
countable additivity. If A,, are disjoint measurable sets, we have

u(UnAn>=/ fdu= /fdu )

n n

by using Proposition 7.5. Moreover, v(A) is zero whenever u(A)
is.
In this chapter we consider the converse. If we are given two

measures p and v, when does there exist f such that (13.1) holds?
The Radon-Nikodym theorem answers this question.

13.1 Absolute continuity

Definition 13.1 A measure v is said to be absolutely continuous
with respect to a measure p if ¥(A) = 0 whenever u(A) = 0. We
write v < .
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Proposition 13.2 Let v be a finite measure. Then v is absolutely
continuous with respect to p if and only if for all € there exists §
such that p(A) < 6 implies v(A) < e.

Proof. Suppose for each e, there exists § such that u(A) < §
implies v(A) < e. If pu(A) = 0, then v(A) < ¢ for all ¢, hence
v(A) =0, and thus v < p.

Suppose now that v < pu. If there exists an € for which no
corresponding § exists, then there exists Ej, such that u(Ey) < 2~k
but v(Ey) > e. Let F =nNy2, U2, Eji. Then

p(F) = lim p(Uge, Br) < lim Z 27k =0,

n—oo n— oo

k=n
but
v(F)= lim v(U2, Eg) > ¢;
n—oo
This contradicts the absolute continuity. O

13.2 The main theorem

Lemma 13.3 Let p and v be finite positive measures on a mea-
surable space (X, A). Either p L v or else there exists € > 0 and
G € A such that u(G) > 0 and G is a positive set for v — ep.

Proof. Consider the Hahn decomposition for v — % . Thus there
exists a negative set F,, and a positive set F),, for this measure,
FE,, and F), are disjoint, and their union is X. Let F' = U, F}, and
E =n,E,. Note E¢ =U,Ef =U,F, =F.

For each n, ¥ C E,,, so
v(E) <v(By) < fu(E,) < Lu(X).

Since v is a positive measure, this implies v(E) = 0.

One possibility is that u(E£°¢) = 0, in which case L v. The
other possibility is that p(E€) > 0. In this case, u(F,) > 0 for
some n. Let ¢ = 1/n and G = F,,. Then from the definition of F,,
G is a positive set for v — ep. O
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We now are ready for the Radon-Nikodym theorem.

Theorem 13.4 Suppose u is a o-finite positive measure on a mea-
surable space (X, A) and v is a finite positive measure on (X, .A)
such that v is absolutely continuous with respect to p. Then there
exists a p-integrable non-negative function f which is measurable
with respect to A such that

v(4) = [ rau

for all A € A. Moreover, if g is another such function, then f =g
almost everywhere with respect to .

The function f is called the Radon-Nikodym derivative of v with
respect to p or sometimes the density of v with respect to u, and
is written f = dv/du. Sometimes one writes

dv = fdu.

The idea of the proof is to look at the set of f such that
J4 fdp < v(A) for each A € A, and then to choose the one such
that [, fdu is largest.

Proof. Step 1. Let us first prove the uniqueness assertion. For
every set A we have

/A(f—g) dp=v(A) —v(A) =0.

By Proposition 8.1 we have f — g = 0 a.e. with respect to pu.

Step 2. Let us assume g is a finite measure for now. In this step
we define the function f. Define

F = {g measurable : g > O,/ gdu <v(A) for all A € A}.
A

F is not empty because 0 € F. Let L = sup{[gdu : g € F},
and let g, be a sequence in F such that [ g, dp — L. Let h,, =

max(gi, ..., gn)-

We claim that if g1 and go are in F, then he = max(g1,g2) is
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also in F. To see this, let B = {z: g1(z) > g2(x)}, and write

/hszZ/ hodpt [ hody
A ANB ANBe¢

<v(ANB)+v(ANB°)
=v(A).
Therefore hy € F.
By an induction argument, h,, is in F.

The h,, increase, say to f. By monotone convergence, [ fdu =
L and

/ Fdp < v(A) (13.2)
A
for all A.

Step 3. Next we prove that f is the desired function. Define a
measure A\ by

ANA)=v(A) — /A fdu.
A is a positive measure since f € F.

Suppose A is not mutually singular to . By Lemma 13.3, there
exists € > 0 and G such that G is measurable, u(G) > 0, and G is
a positive set for A — ep. For any A € A,

v(A) - /Afdu — AA) > AANG) > e(ANG) = /AaxG .

or

W) = [ (7+exa) die
A
Hence f +exg € F. But
7+ exo)du=L -+ 2n(6) > L,
X

a contradiction to the definition of L.

Therefore A L p. Then there must exist H € A such that
u(H) =0 and A\(H¢) = 0. Since v < p, then v(H) = 0, and hence

AH) = v(H) — /Hfdu = 0.
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This implies A = 0, or v(A) = [, fdpu for all A.

Step 4. We now suppose u is o-finite. There exist F; 1T X such
that pu(F;) < oo for each i. Let p; be the restriction of u to Fj,
that is, u;(A) = w(A N F;). Define v;, the restriction of v to Fj,
similarly. If p;(A) = 0, then u(A N F;) = 0, hence v(AN F;) =0,
and thus v;(A) = 0. Therefore v; < p;. If f; is the function such
that dv; = f; du;, the argument of Step 1 shows that f; = f; on F;
if i < j. Define f by f(z) = fi(x) if x € F;. Then for each A € A,

Letting ¢ — oo shows that f is the desired function. O

13.3 Lebesgue decomposition theorem

The proof of the Lebesque decomposition theorem is almost the
same.

Theorem 13.5 Suppose p and v are two finite positive measures.
There exist positive measures \, p such thatv = \+p, p is absolutely
continuous with respect to p, and A\ and p are mutually singular.

Proof. Define F and L and construct f as in the proof of the
Radon-Nikodym theorem. Let p(A) = [, fdp and let A = v — p.
Our construction shows that

/Afdu < v(A),

so A(A) > 0 for all A. We have p+ A = v. We need to show p and
A are mutually singular.

If not, by Lemma 13.3, there exists ¢ > 0 and F' € A such that
u(F) > 0 and F is a positive set for A — eu. We get a contradic-
tion exactly as in the proof of the Radon-Nikodym theorem. We
conclude that A L p. O
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13.4 Exercises

Exercise 13.1 This exercise asks you to prove the Radon-Niko-
dym theorem for signed measures. Let (X,.A) be a measurable
space. Suppose v is a signed measure, p is a finite positive measure,
and v(A) = 0 whenever pu(A) = 0 and A € A. Show there exists
an integrable real-valued function f such that v(A) = [, fdpu for
all A € A.

Exercise 13.2 We define a compler measure j1 on a measurable
space (X,.A) to be a map from A to C such that u()) = 0 and
p(U2 Ay = 3000 w(A;) whenever the A; are in A and are pair-
wise disjoint. Formulate and prove a Radon-Nikodym theorem for
complex measures.

Exercise 13.3 Let (X,.4) be a measurable space and let p and v
be two finite measures. We say p and v are equivalent measures if
<< vand v < pu. Show that p and v are equivalent if and only
if there exists a measurable function f that is strictly positive a.e.
with respect to pu such that dv = f dpu.

Exercise 13.4 Suppose u and v are two finite measures such that
v is absolutely continuous with respect to u. Let p = u + v. Note
that u(A) < p(A) and v(A) < p(A) for each measurable A. In
particular, 4 < p and v < p. Prove that if f = du/dp and
g = dv/dp, then g is strictly positive for almost every x with respect

top, f+g=1,and dv = (f/g) du.

Exercise 13.5 If u is a signed measure on (X,.A) and |u| is the
total variation measure, prove that there exists a real-valued func-
tion f that is measurable with respect to A such that |f| =1 a.e.
with respect to p and du = fd|ul.

Exercise 13.6 Suppose v < p and p < v. Prove that p < p and
dp dp dv

du  dv dp

Exercise 13.7 Suppose A, is a sequence of positive measures on
a measurable space (X,.A) with sup,, A\,,(X) < oo and p is another
finite positive measure on (X,.A). Suppose A\, = f,du + v, is
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the Lebesgue decomposition of A,; in particular, v,, L pu. If A =

> . An, show that

n=1
A= (SRt Yo
n=1 n=1
is the Lebesgue decomposition of \.

Exercise 13.8 Let (X, F, 1) be a measure space, and suppose &
is a sub-o-algebra of F, that is, £ is itself a o-algebra and £ C F.
Suppose f is a non-negative integrable function that is measurable
with respect to F. Define v(A) = [, fdu for A € £ and let i be
the restriction of u to £.

(1) Prove that v < f.

(2) Since v and @ are measures on &, then g = dv/dp is measurable
with respect to £. Prove that

/Agdu=/Afdu (13.3)

whenever A € £. g is called the conditional expectation of f with
respect to £ and we write g = E[f | £]. If f is integrable and
real-valued but not necessarily non-negative, we define

E[f|E]=E[fT[E]-E[f™| €]

3) Show that f = g if and only if f is measurable with respect to
E.

(4) Prove that if h is £ measurable and [, hdp = [, fdp for all
A € &, then h = g a.e. with respect to pu.

Exercise 13.9 Suppose (X, A, p) is a measure space and f is in-
tegrable and measurable with respect to A. Suppose in addition
that By, Bs, ..., B, is a finite sequence of disjoint elements of A
whose union is X and that each B; has positive p measure. Let
C =0(By,...,By,). Prove that

n de
E[fw]zz%mj.

j=1 J

Exercise 13.10 Suppose that (X, F, 1) is a measure space, £ is a
sub-o-algebra of F, and D is a sub-o-algebra of £. Suppose f is
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integrable, real-valued, and measurable with respect to F. Prove

that
E[E[f €] |DI=E[f|D]

and
E[E[f|D] |€]=E[f | D].

Exercise 13.11 Suppose that (X, F,u) is a measure space and
£ is a sub-o-algebra of F. Suppose that f and fg are integrable
real-valued functions, where f is measurable with respect to F and
g is measurable with respect to £. Prove that

Elfg| &l =gE[f]E].



Chapter 14

Differentiation

In this chapter we want to look at when a function from R to R is
differentiable and when the fundamental theorem of calculus holds.
Briefly, our results are the following.

(1) The derivative of f; f(y)dy is equal to f a.e. if f is integrable
(Theorem 14.5);

(2) Functions of bounded variation, in particular monotone func-
tions are differentiable (Theorem 14.8);

f f'(y)dy = f(b)— f(a) if f is absolutely continuous (Theorem
14 14).

Our approach uses what are known as maximal functions and
uses the Radon-Nikodym theorem and the Lebesgue decomposition
theorem. However, some students and instructors prefer a more
elementary proof of the results on differentiation. In Sections 14.5,
14.6, and 14.7 we give an alternative approach that avoids the
use of the Radon-Nikodym theorem and Lebesgue decomposition
theorem.

The definition of derivative is the same as in elementary calcu-
lus. A function f is differentiable at x if

Lo fa+h) - f(@)
h—0 h

exists, and the limit is called the derivative of f at x and is denoted

f'(x). If f:[a,b] = R, we say f is differentiable on [a, b] if the
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