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Chapter 13

The Radon-Nikodym
theorem

Suppose f is non-negative and integrable with respect to µ. If we
define ⌫ by

⌫(A) =

Z

A

f dµ, (13.1)

then ⌫ is a measure. The only part that needs thought is the
countable additivity. If An are disjoint measurable sets, we have

⌫([nAn) =

Z

[
n

A
n

f dµ =
1
X

n=1

Z

A
n

f dµ =
1
X

n=1

⌫(An)

by using Proposition 7.5. Moreover, ⌫(A) is zero whenever µ(A)
is.

In this chapter we consider the converse. If we are given two
measures µ and ⌫, when does there exist f such that (13.1) holds?
The Radon-Nikodym theorem answers this question.

13.1 Absolute continuity

Definition 13.1 A measure ⌫ is said to be absolutely continuous
with respect to a measure µ if ⌫(A) = 0 whenever µ(A) = 0. We
write ⌫ ⌧ µ.
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100 CHAPTER 13. THE RADON-NIKODYM THEOREM

Proposition 13.2 Let ⌫ be a finite measure. Then ⌫ is absolutely
continuous with respect to µ if and only if for all " there exists �
such that µ(A) < � implies ⌫(A) < ".

Proof. Suppose for each ", there exists � such that µ(A) < �
implies ⌫(A) < ". If µ(A) = 0, then ⌫(A) < " for all ", hence
⌫(A) = 0, and thus ⌫ ⌧ µ.

Suppose now that ⌫ ⌧ µ. If there exists an " for which no
corresponding � exists, then there exists Ek such that µ(Ek) < 2�k

but ⌫(Ek) � ". Let F = \1
n=1 [1

k=n Ek. Then

µ(F ) = lim
n!1

µ([1
k=nEk)  lim

n!1

1
X

k=n

2�k = 0,

but
⌫(F ) = lim

n!1
⌫([1

k=nEk) � ";

This contradicts the absolute continuity.

13.2 The main theorem

Lemma 13.3 Let µ and ⌫ be finite positive measures on a mea-
surable space (X,A). Either µ ? ⌫ or else there exists " > 0 and
G 2 A such that µ(G) > 0 and G is a positive set for ⌫ � "µ.

Proof. Consider the Hahn decomposition for ⌫ � 1
nµ. Thus there

exists a negative set En and a positive set Fn for this measure,
En and Fn are disjoint, and their union is X. Let F = [nFn and
E = \nEn. Note Ec = [nE

c
n = [nFn = F .

For each n, E ⇢ En, so

⌫(E)  ⌫(En)  1
nµ(En)  1

nµ(X).

Since ⌫ is a positive measure, this implies ⌫(E) = 0.

One possibility is that µ(Ec) = 0, in which case µ ? ⌫. The
other possibility is that µ(Ec) > 0. In this case, µ(Fn) > 0 for
some n. Let " = 1/n and G = Fn. Then from the definition of Fn,
G is a positive set for ⌫ � "µ.
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13.2. THE MAIN THEOREM 101

We now are ready for the Radon-Nikodym theorem.

Theorem 13.4 Suppose µ is a �-finite positive measure on a mea-
surable space (X,A) and ⌫ is a finite positive measure on (X,A)
such that ⌫ is absolutely continuous with respect to µ. Then there
exists a µ-integrable non-negative function f which is measurable
with respect to A such that

⌫(A) =

Z

A

f dµ

for all A 2 A. Moreover, if g is another such function, then f = g
almost everywhere with respect to µ.

The function f is called the Radon-Nikodym derivative of ⌫ with
respect to µ or sometimes the density of ⌫ with respect to µ, and
is written f = d⌫/dµ. Sometimes one writes

d⌫ = f dµ.

The idea of the proof is to look at the set of f such that
R

A
f dµ  ⌫(A) for each A 2 A, and then to choose the one such

that
R

X
f dµ is largest.

Proof. Step 1. Let us first prove the uniqueness assertion. For
every set A we have

Z

A

(f � g) dµ = ⌫(A)� ⌫(A) = 0.

By Proposition 8.1 we have f � g = 0 a.e. with respect to µ.

Step 2. Let us assume µ is a finite measure for now. In this step
we define the function f . Define

F =
n

g measurable : g � 0,

Z

A

g dµ  ⌫(A) for all A 2 A
o

.

F is not empty because 0 2 F . Let L = sup{R g dµ : g 2 F},
and let gn be a sequence in F such that

R

gn dµ ! L. Let hn =
max(g1, . . . , gn).

We claim that if g1 and g2 are in F , then h2 = max(g1, g2) is
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102 CHAPTER 13. THE RADON-NIKODYM THEOREM

also in F . To see this, let B = {x : g1(x) � g2(x)}, and write
Z

A

h2 dµ =

Z

A\B

h2 dµ+

Z

A\Bc

h2 dµ

=

Z

A\B

g1 dµ+

Z

A\Bc

g2 dµ

 ⌫(A \B) + ⌫(A \Bc)

= ⌫(A).

Therefore h2 2 F .

By an induction argument, hn is in F .

The hn increase, say to f . By monotone convergence,
R

f dµ =
L and

Z

A

f dµ  ⌫(A) (13.2)

for all A.

Step 3. Next we prove that f is the desired function. Define a
measure � by

�(A) = ⌫(A)�
Z

A

f dµ.

� is a positive measure since f 2 F .

Suppose � is not mutually singular to µ. By Lemma 13.3, there
exists " > 0 and G such that G is measurable, µ(G) > 0, and G is
a positive set for �� "µ. For any A 2 A,

⌫(A)�
Z

A

f dµ = �(A) � �(A \G) � "µ(A \G) =

Z

A

"�G dµ,

or

⌫(A) �
Z

A

(f + "�G) dµ.

Hence f + "�G 2 F . But
Z

X

(f + "�G) dµ = L+ "µ(G) > L,

a contradiction to the definition of L.

Therefore � ? µ. Then there must exist H 2 A such that
µ(H) = 0 and �(Hc) = 0. Since ⌫ ⌧ µ, then ⌫(H) = 0, and hence

�(H) = ⌫(H)�
Z

H

f dµ = 0.
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13.3. LEBESGUE DECOMPOSITION THEOREM 103

This implies � = 0, or ⌫(A) =
R

A
f dµ for all A.

Step 4. We now suppose µ is �-finite. There exist Fi " X such
that µ(Fi) < 1 for each i. Let µi be the restriction of µ to Fi,
that is, µi(A) = µ(A \ Fi). Define ⌫i, the restriction of ⌫ to Fi,
similarly. If µi(A) = 0, then µ(A \ Fi) = 0, hence ⌫(A \ Fi) = 0,
and thus ⌫i(A) = 0. Therefore ⌫i ⌧ µi. If fi is the function such
that d⌫i = fi dµi, the argument of Step 1 shows that fi = fj on Fi

if i  j. Define f by f(x) = fi(x) if x 2 Fi. Then for each A 2 A,

⌫(A \ Fi) = ⌫i(A) =

Z

A

fi dµi =

Z

A\F
i

f dµ.

Letting i ! 1 shows that f is the desired function.

13.3 Lebesgue decomposition theorem

The proof of the Lebesgue decomposition theorem is almost the
same.

Theorem 13.5 Suppose µ and ⌫ are two finite positive measures.
There exist positive measures �, ⇢ such that ⌫ = �+⇢, ⇢ is absolutely
continuous with respect to µ, and � and µ are mutually singular.

Proof. Define F and L and construct f as in the proof of the
Radon-Nikodym theorem. Let ⇢(A) =

R

A
f dµ and let � = ⌫ � ⇢.

Our construction shows that
Z

A

f dµ  ⌫(A),

so �(A) � 0 for all A. We have ⇢+ � = ⌫. We need to show µ and
� are mutually singular.

If not, by Lemma 13.3, there exists " > 0 and F 2 A such that
µ(F ) > 0 and F is a positive set for � � "µ. We get a contradic-
tion exactly as in the proof of the Radon-Nikodym theorem. We
conclude that � ? µ.
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104 CHAPTER 13. THE RADON-NIKODYM THEOREM

13.4 Exercises

Exercise 13.1 This exercise asks you to prove the Radon-Niko-
dym theorem for signed measures. Let (X,A) be a measurable
space. Suppose ⌫ is a signed measure, µ is a finite positive measure,
and ⌫(A) = 0 whenever µ(A) = 0 and A 2 A. Show there exists
an integrable real-valued function f such that ⌫(A) =

R

A
f dµ for

all A 2 A.

Exercise 13.2 We define a complex measure µ on a measurable
space (X,A) to be a map from A to C such that µ(;) = 0 and
µ([1

i=1Ai) =
P1

i=1 µ(Ai) whenever the Ai are in A and are pair-
wise disjoint. Formulate and prove a Radon-Nikodym theorem for
complex measures.

Exercise 13.3 Let (X,A) be a measurable space and let µ and ⌫
be two finite measures. We say µ and ⌫ are equivalent measures if
µ ⌧ ⌫ and ⌫ ⌧ µ. Show that µ and ⌫ are equivalent if and only
if there exists a measurable function f that is strictly positive a.e.
with respect to µ such that d⌫ = f dµ.

Exercise 13.4 Suppose µ and ⌫ are two finite measures such that
⌫ is absolutely continuous with respect to µ. Let ⇢ = µ+ ⌫. Note
that µ(A)  ⇢(A) and ⌫(A)  ⇢(A) for each measurable A. In
particular, µ ⌧ ⇢ and ⌫ ⌧ ⇢. Prove that if f = dµ/d⇢ and
g = d⌫/d⇢, then g is strictly positive for almost every x with respect
to µ, f + g = 1, and d⌫ = (f/g) dµ.

Exercise 13.5 If µ is a signed measure on (X,A) and |µ| is the
total variation measure, prove that there exists a real-valued func-
tion f that is measurable with respect to A such that |f | = 1 a.e.
with respect to µ and dµ = f d|µ|.

Exercise 13.6 Suppose ⌫ ⌧ µ and ⇢ ⌧ ⌫. Prove that ⇢ ⌧ µ and

d⇢

dµ
=

d⇢

d⌫
· d⌫
dµ

.

Exercise 13.7 Suppose �n is a sequence of positive measures on
a measurable space (X,A) with supn �n(X) < 1 and µ is another
finite positive measure on (X,A). Suppose �n = fn dµ + ⌫n is
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13.4. EXERCISES 105

the Lebesgue decomposition of �n; in particular, ⌫n ? µ. If � =
P1

n=1 �n, show that

� =
⇣

1
X

n=1

fn

⌘

dµ+
1
X

n=1

⌫n

is the Lebesgue decomposition of �.

Exercise 13.8 Let (X,F , µ) be a measure space, and suppose E
is a sub-�-algebra of F , that is, E is itself a �-algebra and E ⇢ F .
Suppose f is a non-negative integrable function that is measurable
with respect to F . Define ⌫(A) =

R

A
f dµ for A 2 E and let µ be

the restriction of µ to E .
(1) Prove that ⌫ ⌧ µ.
(2) Since ⌫ and µ are measures on E , then g = d⌫/dµ is measurable
with respect to E . Prove that

Z

A

g dµ =

Z

A

f dµ (13.3)

whenever A 2 E . g is called the conditional expectation of f with
respect to E and we write g = E [f | E ]. If f is integrable and
real-valued but not necessarily non-negative, we define

E [f | E ] = E [f+ | E ]� E [f� | E ].

(3) Show that f = g if and only if f is measurable with respect to
E .
(4) Prove that if h is E measurable and

R

A
h dµ =

R

A
f dµ for all

A 2 E , then h = g a.e. with respect to µ.

Exercise 13.9 Suppose (X,A, µ) is a measure space and f is in-
tegrable and measurable with respect to A. Suppose in addition
that B1, B2, . . . , Bn is a finite sequence of disjoint elements of A
whose union is X and that each Bj has positive µ measure. Let
C = �(B1, . . . , Bn). Prove that

E [f | C] =
n
X

j=1

R

B
j

f dµ

µ(Bj)
�B

j

.

Exercise 13.10 Suppose that (X,F , µ) is a measure space, E is a
sub-�-algebra of F , and D is a sub-�-algebra of E . Suppose f is
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106 CHAPTER 13. THE RADON-NIKODYM THEOREM

integrable, real-valued, and measurable with respect to F . Prove
that

E [E [f | E ] | D] = E [f | D]

and
E [E [f | D] | E ] = E [f | D].

Exercise 13.11 Suppose that (X,F , µ) is a measure space and
E is a sub-�-algebra of F . Suppose that f and fg are integrable
real-valued functions, where f is measurable with respect to F and
g is measurable with respect to E . Prove that

E [fg | E ] = gE [f | E ].
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Chapter 14

Di↵erentiation

In this chapter we want to look at when a function from R to R is
di↵erentiable and when the fundamental theorem of calculus holds.
Briefly, our results are the following.
(1) The derivative of

R x

a
f(y) dy is equal to f a.e. if f is integrable

(Theorem 14.5);
(2) Functions of bounded variation, in particular monotone func-
tions, are di↵erentiable (Theorem 14.8);

(3)
R b

a
f 0(y) dy = f(b)�f(a) if f is absolutely continuous (Theorem

14.14).

Our approach uses what are known as maximal functions and
uses the Radon-Nikodym theorem and the Lebesgue decomposition
theorem. However, some students and instructors prefer a more
elementary proof of the results on di↵erentiation. In Sections 14.5,
14.6, and 14.7 we give an alternative approach that avoids the
use of the Radon-Nikodym theorem and Lebesgue decomposition
theorem.

The definition of derivative is the same as in elementary calcu-
lus. A function f is di↵erentiable at x if

lim
h!0

f(x+ h)� f(x)

h

exists, and the limit is called the derivative of f at x and is denoted
f 0(x). If f : [a, b] ! R, we say f is di↵erentiable on [a, b] if the

107


