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Chapter 12

Signed measures

Signed measures have the countable additivity property of mea-
sures, but are allowed to take negative as well as positive val-
ues. We will see shortly that an example of a signed measure is
⌫(A) =

R

A
f dµ, where f is integrable and takes both positive and

negative values.

12.1 Positive and negative sets

Definition 12.1 Let A be a �-algebra. A signed measure is a
function µ : A ! (�1,1] such that µ(;) = 0 and µ([1

i=1Ai) =
P1

i=1 µ(Ai) whenever the Ai are pairwise disjoint and all the Ai

are in A.

When we want to emphasize that a measure is defined as in
Definition 3.1 and only takes non-negative values, we refer to it as
a positive measure.

Definition 12.2 Let µ be a signed measure. A set A 2 A is called
a positive set for µ if µ(B) � 0 whenever B ⇢ A and B 2 A. We
say A 2 A is a negative set if µ(B)  0 whenever B ⇢ A and
B 2 A. A null set A is one where µ(B) = 0 whenever B ⇢ A and
B 2 A.

93



D
ow

n
lo

ad
ed

fr
o
m

w
eb

p
ag

e
o
f
R
ic

h
ar

d
F
.
B

as
s

V
er

si
o
n

o
f
N

o
ve

m
b
er

4
,
2
0
1
1

94 CHAPTER 12. SIGNED MEASURES

Note that if µ is a signed measure, then

µ([1
i=1Ai) = lim

n!1
µ([n

i=1Ai).

The proof is the same as in the case of positive measures.

Example 12.3 Suppose m is Lebesgue measure and

µ(A) =

Z

A

f dm

for some integrable f . If we let P = {x : f(x) � 0}, then P
is easily seen to be a positive set, and if N = {x : f(x) < 0},
then N is a negative set. The Hahn decomposition which we give
below is a decomposition of our space (in this case R) into the
positive and negative sets P and N . This decomposition is unique,
except that C = {x : f(x) = 0} could be included in N instead
of P , or apportioned partially to P and partially to N . Note,
however, that C is a null set. The Jordan decomposition below is
a decomposition of µ into µ+ and µ�, where µ+(A) =

R

A
f+ dm

and µ�(A) =
R

A
f� dm.

Proposition 12.4 Let µ be a signed measure which takes values
in (�1,1]. Let E be measurable with µ(E) < 0. Then there exists
a measurable subset F of E that is a negative set with µ(F ) < 0.

Proof. If E is a negative set, we are done. If not, there exists a
measurable subset with positive measure. Let n1 be the smallest
positive integer such that there exists E1 ⇢ E with µ(E1) � 1/n1.
We then define pairwise disjoint measurable sets E2, E3, . . . by in-
duction as follows. Let k � 2 and suppose E1, . . . , Ek�1 are pair-
wise disjoint measurable sets with µ(Ei) > 0 for i = 1, . . . , k � 1.
If Fk = E � (E1 [ · · · [ Ek�1) is a negative set, then

µ(Fk) = µ(E)�
k�1
X

i=1

µ(Ei)  µ(E) < 0

and Fk is the desired set F . If Fk is not a negative set, let nk be
the smallest positive integer such that there exists Ek ⇢ Fk with
Ek measurable and µ(Ek) � 1/nk.
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12.2. HAHN DECOMPOSITION THEOREM 95

We stop the construction if there exists k such that Fk is a
negative set with µ(Fk) < 0. If not, we continue and let F =
\kFk = E � ([kEk). Since 0 > µ(E) > �1 and µ(Ek) � 0, then

µ(E) = µ(F ) +
1
X

k=1

µ(Ek).

Then µ(F )  µ(E) < 0, so the sum converges.

It remains to show that F is a negative set. Suppose G ⇢ F is
measurable with µ(G) > 0. Then µ(G) � 1/N for some N . But
this contradicts the construction, since for some k, nk > N , and
we would have chosen the set G instead of the set Ek at stage k.
Therefore F must be a negative set.

12.2 Hahn decomposition theorem

Recall that we write A�B for (A�B)[ (B�A). The following is
known as the Hahn decomposition.

Theorem 12.5 (1) Let µ be a signed measure taking values in
(�1,1]. There exist disjoint measurable sets E and F in A whose
union is X and such that E is a negative set and F is a positive
set.

(2) If E0 and F 0 are another such pair, then E�E0 = F�F 0 is
a null set with respect to µ.

(3) If µ is not a positive measure, then µ(E) < 0. If �µ is not
a positive measure, then µ(F ) > 0.

Proof. (1) Let L = inf{µ(A) : A is a negative set}. Choose
negative sets An such that µ(An) ! L. Let E = [1

n=1An. Let
Bn = An� (B1[ · · ·[Bn�1) for each n. Since An is a negative set,
so is each Bn. Also, the Bn are disjoint and [nBn = [nAn = E.
If C ⇢ E, then

µ(C) = lim
n!1

µ(C \ ([n
i=1Bi)) = lim

n!1

n
X

i=1

µ(C \Bi)  0.

Thus E is a negative set.
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96 CHAPTER 12. SIGNED MEASURES

Since E is a negative set,

µ(E) = µ(An) + µ(E �An)  µ(An).

Letting n ! 1, we obtain µ(E) = L.

Let F = Ec. If F were not a positive set, there would exist
B ⇢ F with µ(B) < 0. By Proposition 12.4 there exists a negative
set C contained in B with µ(C) < 0. But then E [ C would be a
negative set with µ(E [ C) < µ(E) = L, a contradiction.

(2) To prove uniqueness, if E0, F 0 are another such pair of sets
and A ⇢ E�E0 ⇢ E, then µ(A)  0. But A ⇢ E�E0 = F 0�F ⇢
F 0, so µ(A) � 0. Therefore µ(A) = 0. The same argument works if
A ⇢ E0 �E, and any subset of E�E0 can be written as the union
of A1 and A2, where A1 ⇢ E � E0 and A2 ⇢ E0 � E.

(3) Suppose µ is not a positive measure but µ(E) = 0. If A 2 A,
then

µ(A) = µ(A \ E) + µ(A \ F ) � µ(E) + µ(A \ F ) � 0,

which says that µ must be a positive measure, a contradiction. A
similar argument applies for �µ and F .

Let us say two measures µ and ⌫ are mutually singular if there
exist two disjoint sets E and F in A whose union is X with µ(E) =
⌫(F ) = 0. This is often written µ ? ⌫.

Example 12.6 If µ is Lebesgue measure restricted to [0, 1/2], that
is, µ(A) = m(A\ [0, 1/2]), and ⌫ is Lebesgue measure restricted to
[1/2, 1], then µ and ⌫ are mutually singular. We let E = [0, 1/2] and
F = (1/2, 1]. This example works because the Lebesgue measure
of {1/2} is 0.

Example 12.7 A more interesting example is the following. Let f
be the Cantor-Lebesgue function where we define f(x) = 1 if x � 1
and f(x) = 0 if x  0 and let ⌫ be the Lebesgue-Stieltjes measure
associated with f . Let µ be Lebesgue measure. Then µ ? ⌫. To
see this, we let E = C, where C is the Cantor set, and F = Cc. We
already know that m(E) = 0 and we need to show ⌫(F ) = 0. To do
that, we need to show ⌫(I) = 0 for every open interval contained
in F . This will follow if we show ⌫(J) = 0 for every interval of the
form J = (a, b] contained in F . But f is constant on every such
interval, so f(b) = f(a), and therefore ⌫(J) = f(b)� f(a) = 0.
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12.3. JORDAN DECOMPOSITION THEOREM 97

12.3 Jordan decomposition theorem

The following is known as the Jordan decomposition theorem.

Theorem 12.8 If µ is a signed measure on a measurable space
(X,A), there exist positive measures µ+ and µ� such that µ =
µ+�µ� and µ+ and µ� are mutually singular. This decomposition
is unique.

Proof. Let E and F be negative and positive sets, resp., for µ
so that X = E [ F and E \ F = ;. Let µ+(A) = µ(A \ F ),
µ�(A) = �µ(A \ E). This gives the desired decomposition.

If µ = ⌫+ � ⌫� is another such decomposition with ⌫+, ⌫�

mutually singular, let E0 be a set such that ⌫+(E0) = 0 and
⌫�((E0)c) = 0. Set F 0 = (E0)c. HenceX = E0[F 0 and E0\F 0 = ;.
If A ⇢ F 0, then ⌫�(A)  ⌫�(F 0) = 0, and so

µ(A) = ⌫+(A)� ⌫�(A) = ⌫+(A) � 0,

and consequently F 0 is a positive set for µ. Similarly, E0 is a nega-
tive set for µ. Thus E0, F 0 gives another Hahn decomposition of X.
By the uniqueness part of the Hahn decomposition theorem, F�F 0

is a null set with respect to µ. Since ⌫+(E0) = 0 and ⌫�(F 0) = 0,
if A 2 A, then

⌫+(A) = ⌫+(A \ F 0) = ⌫+(A \ F 0)� ⌫�(A \ F 0)

= µ(A \ F 0) = µ(A \ F ) = µ+(A),

and similarly ⌫� = µ�.

The measure
|µ| = µ+ + µ� (12.1)

is called the total variation measure of µ.

12.4 Exercises

Exercise 12.1 Suppose µ is a signed measure. Prove that A is a
null set with respect to µ if and only if |µ|(A) = 0.
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98 CHAPTER 12. SIGNED MEASURES

Exercise 12.2 Let µ be a signed measure. Define
Z

f dµ =

Z

f dµ+ �
Z

f dµ�.

Prove that
�

�

�

Z

f dµ
�

�

�


Z

|f | d|µ|.

Exercise 12.3 Let µ be a signed measure on (X,A). Prove that

|µ(A)| = sup
n

�

�

�

Z

A

f dµ
�

�

�

: f  1
o

.

Exercise 12.4 Let µ be a positive measure and ⌫ a signed mea-
sure. Prove that ⌫ ⌧ µ if and only if ⌫+ ⌧ µ and ⌫� ⌧ µ.

Exercise 12.5 Let (X,A) be a measurable space. Suppose � =
µ � ⌫, where µ and ⌫ are finite positive measures. Prove that
µ(A) � �+(A) and ⌫(A) � ��(A) for every A 2 A.

Exercise 12.6 Let (X,A) be a measurable space. Prove that if µ
and ⌫ are finite signed measures, then |µ+ ⌫|(A)  |µ(A)|+ |⌫(A)|
for every A 2 A.

Exercise 12.7 Suppose that µ is a signed measure on (X,A).
Prove that if A 2 A, then

µ+(A) = sup{µ(B) : B 2 A, B ⇢ A}

and
µ�(A) = � inf{µ(B) : B 2 A, B ⇢ A}.

Exercise 12.8 Suppose that µ is a signed measure on (X,A).
Prove that if A 2 A, then

|µ|(A) = sup
n

n
X

j=1

|µ(Bj)| : each Bj 2 A,

the Bj are disjoint,[n
j=1Bj = A

o

.


