Measure and Integration 2012-13-Selected Solutions Chapter 8

1. (Exercise 8.2, p.65) Define

$$
\mathcal{B}(\overline{\mathbb{R}})=\{B \cup C: B \in \mathcal{B}(\mathbb{R}), C \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\} .
$$

Show that $\mathcal{B}(\overline{\mathbb{R}})$ is a σ-algebra over $\overline{\mathbb{R}}$. Moreover prove that $\mathcal{B}(\mathbb{R})=\mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$.
Proof: Clearly $\emptyset \in \mathcal{B}(\overline{\mathbb{R}})$ since $\emptyset=\emptyset \cup \emptyset$ and $\emptyset \in \mathcal{B}(\mathbb{R})$. Suppose $\bar{B} \in \mathcal{B}(\overline{\mathbb{R}})$, then $\bar{B}=B \cup C$ with $B \in \mathcal{B}(\mathbb{R})$ and $C \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}$. Now, $\bar{B}^{c}=\overline{\mathbb{R}} \backslash \bar{B}=(\overline{\mathbb{R}} \backslash B) \cap(\overline{\mathbb{R}} \backslash C)$. Since $B \subset \mathbb{R}$, then $\overline{\mathbb{R}} \backslash B$ contains $\{-\infty,+\infty\}$, so that $\overline{\mathbb{R}} \backslash B=(\mathbb{R} \backslash B) \cup\{-\infty,+\infty\}$. Furthermore, $\mathbb{R} \subset \overline{\mathbb{R}} \backslash C$, hence

$$
\begin{aligned}
\bar{B}^{c} & =[(\mathbb{R} \backslash B) \cup\{-\infty,+\infty\}] \cap(\overline{\mathbb{R}} \backslash C) \\
& =[(\mathbb{R} \backslash B) \cap(\overline{\mathbb{R}} \backslash C)] \cup[\{-\infty,+\infty\} \cap(\overline{\mathbb{R}} \backslash C)] \\
& =(\mathbb{R} \backslash B) \cup[\{-\infty,+\infty\} \cap(\overline{\mathbb{R}} \backslash C)] .
\end{aligned}
$$

Since $\mathbb{R} \backslash B \in \mathcal{B}(\mathbb{R})$ and $\{-\infty,+\infty\} \cap(\overline{\mathbb{R}} \backslash C) \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}$, it follows that $\bar{B}^{c} \in \mathcal{B}(\overline{\mathbb{R}})$. Finally, let $\bar{B}_{n} \in \mathcal{B}(\overline{\mathbb{R}})$. Then, $\bar{B}_{n}=B_{n} \cup C_{n}$ with $B_{n} \in \mathcal{B}(\mathbb{R})$ and $C_{n} \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}$. Now,

$$
\bigcup_{n} \bar{B}_{n}=\left(\bigcup_{n} B_{n}\right) \cup\left(\bigcup_{n} C_{n}\right) \in \mathcal{B}(\overline{\mathbb{R}}),
$$

since $\bigcup_{n} B_{n} \in \mathcal{B}(\overline{\mathbb{R}})$ and $\bigcup_{n} C_{n} \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}$.
We now show that $\mathcal{B}(\mathbb{R})=\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$. Clearly, $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$. Now let $D \in \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$, then $D=\bar{B} \cap \mathbb{R}$ where $\bar{B}=B \cup C$ with $B \in \mathcal{B}(\mathbb{R})$ and $C \in$ $\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}$. Hence, $D=B \in \mathcal{B}(\mathbb{R})$. This shows that $\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R} \subset$ $\mathcal{B}(\mathbb{R})$, and therefore $\mathcal{B}(\mathbb{R})=\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$.
2. (p. 65 exercise 8.3) Let (X, \mathcal{A}) be a measurable space.
(a) Let $f, g: X \rightarrow \mathbb{R}$ be measurable fuctions and let $A \in \mathcal{A}$. Show that the function $h: X \rightarrow R$ defined by $h(x)=f(x)$ if $x \in A$, and $h(x)=g(x)$ if $x \notin A$ is measurable.
(b) Let $\left(f_{j}\right)_{j}$ be a sequence of measurable functions and let $\left(A_{j}\right)_{j} \subset \mathcal{A}$ be such that $X=\bigcup_{j} A_{j}$ and $f_{j}=f_{k}$ on $A_{j} \cap A_{k}$. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=f_{j}$ if $x \in A_{j}$. Show that f is measurable.
$\operatorname{Proof}(\mathbf{a})$: Notice that since $A, A^{c} \in \mathcal{A}$, then the indicator functions 1_{A} and $1_{A^{c}}$ are measurable. Furthermore, $h(x)=f(x) \cdot 1_{A}(x)+g(x) \cdot 1_{A^{c}}$, hence measurable (we used the fact the sums and products of measurable functions are measurable).
$\operatorname{Proof}(\mathbf{b}):$ Notice that the condition $f_{j}=f_{k}$ on $A_{j} \cap A_{k}$ implies that f is welldefined. Let $B \in \mathcal{B}(\mathbb{R})$, then

$$
f^{-1}(B)=f^{-1}(B) \cap \bigcup_{j} A_{j}=\bigcup_{j}\left(f^{-1}(B) \cap A_{j}\right)=\bigcup_{j}\left(f_{j}^{-1}(B) \cap A_{j}\right) \in \mathcal{A} .
$$

Therefore, f is meaurable.
3. (Exercise 8.9, p.65) Show that the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=$ $\max \{x, 0\}$ and $g(x)=\min \{x, 0\}$ are continuous and hence $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. Conclude that if (X, \mathcal{A}) is a measure space and $u: X \rightarrow \mathbb{R}$ is an $\mathcal{A} / \mathcal{B}(\mathbb{R})$ measurable function, then the positive part u^{+}and the negative part u^{-}are also $\mathcal{A} / \mathcal{B}(\mathbb{R})$ measurable.

Proof: Notice that the functions $i, k: \mathbb{R} \rightarrow \mathbb{R}$ given by $i(x)=x$ and $k(x)=|x|$ are continuous. Now, $f(x)=\frac{1}{2}(i(x)+k(x))$ and $g(x)=\frac{1}{2}(-i(x)+k(x))$ are linear combinations of continuous functions, hence continuous and therefore, $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. Finally, if $u: X \rightarrow \mathbb{R}$ is an $\mathcal{A} / \mathcal{B}(\mathbb{R})$ measurable function, then $u^{+}=$ $f \circ u$ and $u^{-}=g \circ u$ are compositions of measurable functions, hence measurable.
4. (p.65 exercise 8.12) Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Explain why u and $u^{\prime}=$ $d u / d x$ are measurable.

Proof: Since u is differentiable, then u is continuous and hence measurable. Define $u_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $u_{n}=n(u(x+1 / n)-u(x))$. Notice that u_{n} is a linear combination of measurable functions, hence measurable. Also $u^{\prime}(x)=\lim _{n \rightarrow \infty} u_{n}(x)$ for all $x \in \mathbb{R}$. Therefore by Corollary 8.9, u^{\prime} is measurable.
5. (Exercise 8.15, p.65) Let λ be the one-dimensional Lebesgue measure and u : $\mathbb{R} \rightarrow \mathbb{R}$ given by $u(x)=|x|$. Determine the measure $u(\lambda)=\lambda \circ u^{-1}$.

Proof: Notice that $u(\mathbb{R})=[0, \infty)$. Hence for all Borel sets $B \subset(-\infty, 0)$, one has $u(\lambda)(B)=\lambda\left(u^{-1}(B)\right)=\lambda(\emptyset)=0$. We therefore need to determine $\lambda \circ u^{-1}$ on $\mathcal{B}(\mathbb{R}) \cap[0, \infty)$. Suppose $(a, b) \subset[0, \infty)$ is an interval, then

$$
\begin{aligned}
u(\lambda)(a, b) & =\lambda\left(u^{-1}((a, b))\right)=\lambda((-b,-a) \cup(a, b)) \\
& =(-a-(-b))+(b-a)=2(b-a)=2 \lambda((a, b)) .
\end{aligned}
$$

Since $\{[0, k)\}$ is an exhaustung sequence of finite $u(\lambda)$, by Theorem 5.7, we see that $u(\lambda)=2 \lambda$.

