Measure and Integration 2012-13-Selected Solutions Chapter 7

1. (Exercise 7.7, p.54). Use image measures to give a new proof that $\lambda^{n}(t \cdot B)=$ $t^{n} \lambda^{n}(B)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and for all $t>0$.

Proof: Let $t>0$ and A the $n \times n$ diagonal matrix such that each diagonal entry is $1 / t$. Define $T_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T_{t}(x)=A x$, i.e. $T_{t}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1} / t, \cdots, x_{n} / t\right)$. Clearly T_{t} is continuous and hence measurable. Notice that $T_{t}^{-1} B=t \cdot B=A B$, hence $T_{t}\left(\lambda^{n}\right)(B)=\lambda^{n}\left(T_{t}^{-1}(B)\right)=\lambda^{n}(t \cdot B)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Since T_{t}^{-1} is a linear transformation, we have by Theorem 7.10 that

$$
T_{t}\left(\lambda^{n}\right)(B)=\left|\operatorname{det} T_{t}^{-1}\right| \lambda^{n}(B)=t^{n} \lambda^{n}(B)
$$

for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and for all $t>0$.
2. (Exercise 7.8, p.54) Let $T: X \rightarrow Y$ be any map. Show that $T^{-1}(\sigma(\mathcal{G}))=$ $\sigma\left(T^{-1}(\mathcal{G})\right.$ holds for arbitrary families \mathcal{G} of subsets of Y.

Proof: First note that $T^{-1}(\sigma(\mathcal{G}))$ is a σ-algebra (see example 3.3(vii). Since $\mathcal{G} \subset$ $\sigma(\mathcal{G})$, then $T^{-1} \mathcal{G} \subset T^{-1}(\sigma(\mathcal{G}))$ and hence $\sigma\left(T^{-1}(\mathcal{G})\right) \subset T^{-1}(\sigma(\mathcal{G}))$ (since $\sigma\left(T^{-1}(\mathcal{G})\right.$) is the smallest σ-algebra containing $\left.T^{-1}(\mathcal{G})\right)$. Furthermore, $T^{-1}(\mathcal{G}) \subset \sigma\left(T^{-1}(\mathcal{G})\right.$, hence by Lemma 7.2, we have $T^{-1}(\sigma(\mathcal{G})) \subset \sigma\left(T^{-1}(\mathcal{G})\right.$. Thus, $T^{-1}(\sigma(\mathcal{G}))=\sigma\left(T^{-1}(\mathcal{G})\right.$.
3. (Exercise 7.10, p.55) (Cantor's ternary set). Let $(X, \mathcal{A})=[0,1],[0,1] \cap \mathcal{B}(\mathbb{R}))$, $\lambda=\left.\lambda^{1}\right|_{[0,1]}$, and $E_{0}=[0,1]$. Remove the open middle third of E_{0} to get two disjoint intervals whose union is E_{1}. Remove the open middle third from each of the intervals making up E_{1} to get four disjoint intervals whose union is E_{2}, etc...
(i) Describe explicitely $E_{0}, E_{1}, E_{2}, E_{3}$.

Proof: $E_{0}=[0,1], E_{1}=[0,1 / 3] \cup[2 / 3,1]$,
$E_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$
$E_{3}=[0,1 / 27] \cup[2 / 27,1 / 9] \cup[2 / 9,7 / 29] \cup[8 / 27,1 / 3] \cup[2 / 3,19 / 27] \cup[20 / 27,7 / 9] \cup$ $[8 / 9,25 / 27] \cup[26 / 27,1]$.
(ii) Prove that each E_{n} is compact (i.e. closed and bounded). Conclude that $C=\cup_{n \geq 0} E_{n}$ is non-empty and compact.
Proof: Each E_{n} is a finite union of 2^{n} compact intervals, hence E_{n} is compact (note that finite union of closed and bounded sets is itself closed and bounded). Since $E_{0} \supset E_{1} \supset E_{2} \supset \ldots$, then C is also compact (note that arbitrary intersection of closed sets is closed and since each set is bounded then C is closed and bounded).

We now prove that C is non-empty. For each n, choose a point $x_{n} \in E_{n}$ (note that $x_{n} \in E_{i}$ for $\left.i \leq n\right)$. Then $\left(x_{n}\right)$ is a sequence in $E_{0}=[0,1]$. Since E_{0} is compact, then $\left(x_{n}\right)$ has a convergent sequence $\left(x_{n_{i}}\right)$ converging to some point $x \in E_{0}$. Notice that for each $n x_{n_{i}} \in E_{n}$ for all n_{i} sufficiently large (namely for all $n_{i} \geq n$). Since E_{n} is compact, then the limit point x must lie in E_{n} for all n. Hence, $x \in C$ and C is non-empty.
(iii) Prove that $C \cap \bigcup_{n \in \mathbb{N}} \bigcup_{k \geq 0}\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right)=\emptyset$.

Proof: Notice that at stage n, the sets removed from E_{n-1} in order to get E_{n} are all of the form $\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right)$ with $n>0$ and $k \geq 0$. Hence, C is disjoint from any such interval and therefore disjoint from the union of such intervals.
(iv) Determine $\lambda\left(E_{n}\right)$ and show that $\lambda(C)=0$.

Proof: For each n, E_{n} consists of 2^{n} disjoint closed interval each of length (or Lebesgue measire) equals 3^{-n}. Hence, $\lambda\left(E_{n}\right)=2^{n} 3^{-n}=\left(\frac{2}{3}\right)^{n}$. Since λ on $[0,1]$ is a finite measure, and E_{n} is a sequence decreasing to C, we have by Theorem 4.4 that $\lambda(C)=\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{n}=0$.
(v) Show that C does not contain any non-empty open interval, and that the interior of C is empty.
Proof: The proof is by contradiction. Suppose that C contains a non-empty open interval (a, b). Let $\epsilon=b-a$. Notice that $\epsilon>0$ since (a, b) is non-empty. Choose N sufficiently large so that $3^{-n}<\epsilon$ for all $n \geq N$. Since E_{n} consists of 2^{-n} disjoint intervals each of length 3^{-n}, then (a, b) cannot be contained in any of these intervals if $n \geq N\left((a, b)\right.$ has length bigger than $\left.3^{-n}\right)$, and hence (a, b) cannot be contained in E_{n} for all $n \geq N$. Therefore (a, b) cannot be contained in C, a contradiction. Finally, if $x \in C$ is an interior point, then C must contain an open interval containing x, but from the above, this is impossible. Hence C contains no interior points, in other words, the interior of C is empty.
(vi) Show that every point $x \in[0,1]$ has a ternary expansion of the form $x=\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}$ with $a_{i} \in\{0,1,2\}$, which we also denote by $x=0 . a_{1}, a_{2}, \ldots$. Conclude that C consists of points whose ternary expansion does not contain the digit 1, i.e., $a_{i} \in$ $\{0,2\}$.
Proof: We first show how the ternary expansion is obtained. To determine the first digit, we divide the unit interval into three intervals of equal length (namely, $[0,1 / 3],(1 / 3,2 / 3),[2 / 3,1])$. Points in the left interval are assigned $a_{1}=0$, points in the middle piece are assigned $a_{1}=1$ and points in the right piece are assigned $a_{1}=2$. To determine the second digit a_{2}, we divide each of the intervals in the previous stage into three intervals of equal length (namely $1 / 9$). The left piece is assigned $a_{2}=0$, the middle piece is assigned $a_{2}=1$ and the right piece is assigned $a_{2}=2$. This process is repeated indefinitely, and at stage n the digit a_{n} is determined according to its location in the left piece ($a_{n}=0$), or the middle piece $\left(a_{n}=1\right)$, or the right piece $\left(a_{n}=2\right)$. In this way, we see that each point in $[0,1]$
has a ternary expansion. In fact all points have a unique ternary expansion except for points of the form $k / 3^{n}$, these have exactly two ternary expansion. For example $1 / 3=0.100000 \ldots=0.022222 \ldots$. In the above description, the middle piece is chosen to be open, hence in the above procedure the ternary expansion obtained for $1 / 3$ is $0.022222 \ldots$...

By the construction of the Cantor set, we see that at stage 1 , the middle piece is removed, i.e. all points whose ternary expansion starts with 1 are removed, and only points with $a_{1} \in\{0,2\}$ remain. At stage 2 , we remove from the remaining pieces the middle piece of each interval, i.e., we remove all points whose second ternary digit $a_{2}=2$. So only points whose ternary expansion starting with $a_{1}, a_{2} \in\{0,2\}$ remain. If we continue this process, we see that at stage n, only points whose first n digits $a_{1}, a_{2}, \ldots a_{n} \in\{0,2\}$ remain. The limiting process, namely C, consists then of all points whose ternary expansion does not contain the digit 1 .
(vii) Show that C is uncountable (yet $\lambda(C)=0$).

Proof: For this we need to define a bijection from C onto $[0,1]$. Define $f: C \rightarrow[0,1]$ as follows: let $x \in C$, then x has a ternary expansion of the form $x=\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}$ with $a_{i} \in\{0,2\}$. Set $f(x)=f\left(\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}\right)=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{i}}$ with $b_{i}=a_{i} / 2$. Then, it is easy to check that f is a bijection. Since $[0,1]$ is uncountable, it follows that C is uncountable.

