Solutions Extra Practice Final Measure and Integration 2014-15

(1) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and let $f \in \mathcal{L}^1(\lambda)$ is bounded. Show that the function g defined by

$$g(t) = \int_{\mathbb{R}} \frac{f(x)}{x^2 + t^2} \, d\lambda(x),$$

is bounded and continuous on the interval $(1,\infty)$

Proof: Let $f_t(x) = \frac{f(x)}{x^2 + t^2}$, then for any $x \in \mathbb{R}$ and any t > 1 one has $|f_t(x)| \le |f(x)|$. Hence, for t > 1

$$|g(t)| \leq \int_{\mathbb{R}} |f_t(x)| \, d\lambda(x) \leq \int_{\mathbb{R}} |f(x)| \, d\lambda(x) < \infty,$$

Hence g is bounded on $(1,\infty)$. Now $t \in (1,\infty)$ and $(t_n)_n \subseteq (1,\infty)$ such that $\lim_{n\to\infty} t_n = t$. Note that for each $x \in \mathbb{R}$, the function $t \to \frac{f(x)}{x^2 + t^2}$ is continuous on $(1,\infty)$, hence $\lim_{n\to\infty} f_{t_n}(x) = f_t(x)$. Since $|f_t| \leq |f|$ and $f \in \mathcal{L}^{(\lambda)}$, then by Lebesgue Dominated Convergence Theorem we have

$$\lim_{n \to \infty} g(t_n) \, d\lambda = \int_{\mathbb{R}} \lim_{n \to \infty} f_{t_n} \, d\lambda = \int_{\mathbb{R}} f_t \, d\lambda = g(t)$$

(2) Consider the measure space $([0,1]\mathcal{B}([0,1]),\lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to [0,1], and λ is the restriction of Lebesgue measure to [0,1]. Let E_1, \dots, E_m be a collection of Borel measurable subsets of [0,1] such that every element $x \in [0,1]$ belongs to at least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \geq \frac{n}{m}$.

Solution: By hypothesis, for any $x \in [0,1]$ we have $\sum_{j=1}^{m} \mathbf{1}_{E_j}(x) \geq n$. Assume for the sake of getting a contradiction that $\lambda(E_j) < \frac{n}{m}$ for all $1 \leq j \leq m$. Then,

$$n = \int_{[0,1]} n \, d\lambda \le \int \sum_{j=1}^m \mathbf{1}_{E_j}(x) \, d\lambda = \sum_{j=1}^m \lambda(E_j) < \sum_{j=1}^m \frac{n}{m} = n,$$

a contradiction. Hence, there exists $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \ge \frac{n}{m}$.

(3) Let (X, \mathcal{F}, μ) be a measure space, and $1 < p, q < \infty$ conjugate numbers, i.e. 1/p + 1/q = 1. Show that if $f \in \mathcal{L}^p(\mu)$, then there exists $g \in \mathcal{L}^q(\mu)$ such that $||g||_q = 1$ and $\int fg \, d\mu = ||f||_p$.

Solution: Note that q(p-1) = p, so we define $g = \operatorname{sgn}(f) \left(\frac{f}{||f||_p}\right)^{p-1}$. Then, $\int |g|^q \, d\mu = \int \frac{|f|^p}{||f||_p^p} \, d\mu = 1.$

So $||g||_q = 1$ and

$$\int fg \, d\mu = \int |fg| \, d\mu = \int \frac{|f|^p}{||f||_p^{p-1}} \, d\mu = ||f||_p.$$

- (4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^1(\lambda)$ and define for h > 0, the function $f_h(x) = \frac{1}{h} \int_{[x,x+h]} f(t) d\lambda(t)$.
 - (a) Show that f_h is Borel measurable for all h > 0.
 - (b) Show that $f_h \in \mathcal{L}^1(\lambda)$ and $||f_h||_1 \leq ||f||_1$.

Solution (a): For h > 0, define $u_h(t, x) = \frac{1}{h} \mathbf{1}_{[x,x+h]}(t) f(t)$, then u_h is $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ measurable. Applying Tonelli's Theorem (Theorem 13.8(ii)) to the positive and negative parts of the function u_h , we have that the functions

$$x \to \int u^+(t,x) \, d\lambda(t) = f_h^+(x), \text{ and } x \to \int u^-(t,x) \, d\lambda(t) = f_h^-(x)$$

are $\mathcal{B}(\mathbb{R})$ measurable. Hence, f_h is Borel measurable for all h > 0.

Solution (b): Note that

$$\int \int \frac{1}{h} \mathbf{1}_{[x,x+h]}(t) |f(t)| \, d\lambda(x) \, d\lambda(t) = \int \int \frac{1}{h} \mathbf{1}_{[t-h,t]}(x) |f(t)| \, d\lambda(x) \, d\lambda(t) = \int |f(t)| \, d\lambda(t) < \infty.$$
Hence, by Eubinit's Theorem f. $\in \mathcal{L}^1(\lambda)$ and

Hence, by Fubini's Theorem $f_h \in \mathcal{L}^1(\lambda)$ and

$$\int |f_h(x)| \, d\lambda(x) = \int \int \frac{1}{h} \mathbf{1}_{[x,x+h]}(t) |f(t)| \, d\lambda(x) \, d\lambda(t) = \int |f(x)| \, d\lambda(x) = ||f||_1.$$

(5) Let (X, \mathcal{A}, μ) be a σ -finite measure space and (A_i) a sequence in \mathcal{A} such that $\lim_{n\to\infty} \mu(A_n) = 0$.

- (a) Show that $\mathbf{1}_{A_n} \xrightarrow{\mu} 0$, i.e. the sequence $(\mathbf{1}_{A_n})$ converges to 0 in measure.
- (b) Show that for any $u \in \mathcal{L}^1(\mu)$, one has $u \mathbf{1}_{A_n} \xrightarrow{\mu} 0$.

S

(c) Show that for any $u \in \mathcal{L}^1(\mu)$, one has

$$\sup_n \int_{\{|u|\mathbf{1}_{A_n} > |u|\}} |u|\mathbf{1}_{A_n} \, d\mu = 0.$$

(d) Show that $\lim_{n\to\infty} \int_{A_n} u \, d\mu = 0$.

Proof (a): For any $0 < \epsilon < 1$ and $anyA \in \mathcal{A}$ with $\mu(A) < \infty$, we have

$$\mu(A \cap \{\mathbf{1}_{A_n} > \epsilon\}) = \mu(A \cap A_n) \le \mu(A_n).$$

Thus, $\limsup_{n\to\infty} \mu(A \cap \{\mathbf{1}_{A_n} > \epsilon\}) = 0$ and hence $\lim_{n\to\infty} \mu(A \cap \{\mathbf{1}_{A_n} > \epsilon\}) = 0$. This implies $\mathbf{1}_{A_n} \xrightarrow{\mu} 0$.

Proof (b): Let $u \in \mathcal{L}^1(\mu)$. For any $\epsilon > 0$ and $\operatorname{any} A \in \mathcal{A}$ with $\mu(A) < \infty$, one has

$$\mu(A \cap \{|u|\mathbf{1}_{A_n} > \epsilon\}) = \mu(A \cap A_n \cap \{|u| > \epsilon\}) \le \mu(A_n).$$

This shows that $\lim_{n\to\infty} \mu(A \cap \{|u|\mathbf{1}_{A_n} > \epsilon\}) = 0$, and hence $u\mathbf{1}_{A_n} \xrightarrow{\mu} 0$.

Proof (c): Let $u \in \mathcal{L}^1(\mu)$. Note that $|u|\mathbf{1}_{A_n} \leq |u|$, thus the set $\{|u|\mathbf{1}_{A_n} > |u|\}$ is empty. By Theorem 10.9(ii), we have

$$\int_{\{|u|\mathbf{1}_{A_n} > |u|\}} |u|\mathbf{1}_{A_n} \, d\mu = 0$$

for all n and hence $\sup_{j} \int_{\{|u|\mathbf{1}_{A_n} > |u|\}} |u|\mathbf{1}_{A_n} d\mu = 0.$

(6) Let (X, \mathcal{A}, μ) be a measure space. Show that μ is σ -finite if and only if there exists $f \in L^1(\mu)$ which is **strictly** positive.

Proof: Assume there exists a function $f \in L^1(\mu)$ which is **strictly** positive. We need to find an exhausting sequence $F_n \uparrow X$ such that $\mu(F_n) < \infty$. To this end, let $F_n = \{x \in X : f(x) \ge \frac{1}{n}\}$. Then, $\{F_n\}$ is an increasing sequence of measurable sets such that $X = \{x \in X : f(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$. By the Markov inequality $\mu(F_n) \le n \int f d\mu < \infty$. Thus, μ is σ -finite.

Conversely, suppose μ is σ -finite and let (F_n) be an exhausting sequence of finite measure. Define $E_1 = F_1$, and $E_n = F_n \setminus F_{n-1}$ for $n \ge 2$. Then, $(E_n)_n$ is a disjoint sequence of measurable sets such that $\bigcup_{n=1}^{\infty} E_n = X$ and $\mu(E_n) < \infty$ for all $n \ge 1$. Define a function f on X by

$$f(x) = \sum_{n=1}^{\infty} \frac{2^{-n}}{\mu(E_n) + 1} \mathbf{1}_{E_n}(x).$$

Then, f > 0, and by Beppo-Levi,

$$\int_X f \, d\mu = \sum_{n=1}^\infty \frac{2^{-n}}{\mu(E_n) + 1} \int_X \mathbf{1}_{E_n} \, d\mu = \sum_{n=1}^\infty \frac{2^{-n}\mu(E_n)}{\mu(E_n) + 1} \le \sum_{n=1}^\infty 2^{-n} = 1 < \infty.$$

So that $f \in \mathcal{L}^1(\mu)$ is the required function.