Solutions Extra Practice Final Measure and Integration 2014-15

(1) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and let $f \in \mathcal{L}^{1}(\lambda)$ is bounded. Show that the function g defined by

$$
g(t)=\int_{\mathbb{R}} \frac{f(x)}{x^{2}+t^{2}} d \lambda(x)
$$

is bounded and continuous on the interval $(1, \infty)$
Proof: Let $f_{t}(x)=\frac{f(x)}{x^{2}+t^{2}}$, then for any $x \in \mathbb{R}$ and any $t>1$ one has $\left|f_{t}(x)\right| \leq|f(x)|$. Hence, for $t>1$

$$
|g(t)| \leq \int_{\mathbb{R}}\left|f_{t}(x)\right| d \lambda(x) \leq \int_{\mathbb{R}}|f(x)| d \lambda(x)<\infty
$$

Hence g is bounded on $(1, \infty)$. Now $t \in(1, \infty)$ and $\left(t_{n}\right)_{n} \subseteq(1, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=t$. Note that for each $x \in \mathbb{R}$, the function $t \rightarrow \frac{f(x)}{x^{2}+t^{2}}$ is continuous on $(1, \infty)$, hence $\lim _{n \rightarrow \infty} f_{t_{n}}(x)=f_{t}(x)$. Since $\left|f_{t}\right| \leq|f|$ and $f \in \mathcal{L}(\lambda)$, then by Lebesgue Dominated Convergence Theorem we have

$$
\lim _{n \rightarrow \infty} g\left(t_{n}\right) d \lambda=\int_{\mathbb{R}} \lim _{n \rightarrow \infty} f_{t_{n}} d \lambda=\int_{\mathbb{R}} f_{t} d \lambda=g(t)
$$

(2) Consider the measure space $([0,1] \mathcal{B}([0,1]), \lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to $[0,1]$, and λ is the restriction of Lebesgue measure to $[0,1]$. Let E_{1}, \cdots, E_{m} be a collection of Borel measurable subsets of $[0,1]$ such that every element $x \in[0,1]$ belongs to at least n sets in the collection $\left\{E_{j}\right\}_{j=1}^{m}$, where $n \leq m$. Show that there exists a $j \in\{1, \cdots, m\}$ such that $\lambda\left(E_{j}\right) \geq \frac{n}{m}$.

Solution: By hypothesis, for any $x \in[0,1]$ we have $\sum_{j=}^{m} \mathbf{1}_{E_{j}}(x) \geq n$. Assume for the sake of getting a contradiction that $\lambda\left(E_{j}\right)<\frac{n}{m}$ for all $1 \leq j \leq m$. Then,

$$
n=\int_{[0,1]} n d \lambda \leq \int \sum_{j=}^{m} \mathbf{1}_{E_{j}}(x) d \lambda=\sum_{j=1}^{m} \lambda\left(E_{j}\right)<\sum_{j=}^{m} \frac{n}{m}=n
$$

a contradiction. Hence, there exists $j \in\{1, \cdots, m\}$ such that $\lambda\left(E_{j}\right) \geq \frac{n}{m}$.
(3) Let (X, \mathcal{F}, μ) be a measure space, and $1<p, q<\infty$ conjugate numbers, i.e. $1 / p+1 / q=1$. Show that if $f \in \mathcal{L}^{p}(\mu)$, then there exists $g \in \mathcal{L}^{q}(\mu)$ such that $\|g\|_{q}=1$ and $\int f g d \mu=\|f\|_{p}$.

Solution: Note that $q(p-1)=p$, so we define $g=\operatorname{sgn}(f)\left(\frac{f}{\|f\|_{p}}\right)^{p-1}$. Then,

$$
\int|g|^{q} d \mu=\int \frac{|f|^{p}}{\|f\|_{p}^{p}} d \mu=1
$$

So $\|g\|_{q}=1$ and

$$
\int f g d \mu=\int|f g| d \mu=\int \frac{|f|^{p}}{\|f\|_{p}^{p-1}} d \mu=\|f\|_{p}
$$

(4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R}))$ is the Borel σ-algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^{1}(\lambda)$ and define for $h>0$, the function $f_{h}(x)=\frac{1}{h} \int_{[x, x+h]} f(t) d \lambda(t)$.
(a) Show that f_{h} is Borel measurable for all $h>0$.
(b) Show that $f_{h} \in \mathcal{L}^{1}(\lambda)$ and $\left\|f_{h}\right\|_{1} \leq\|f\|_{1}$.

Solution (a): For $h>0$, define $u_{h}(t, x)=\frac{1}{h} \mathbf{1}_{[x, x+h]}(t) f(t)$, then u_{h} is $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ measurable. Applying Tonelli's Theorem (Theorem 13.8(ii)) to the positive and negative parts of the function u_{h}, we have that the functions

$$
x \rightarrow \int u^{+}(t, x) d \lambda(t)=f_{h}^{+}(x), \text { and } x \rightarrow \int u^{-}(t, x) d \lambda(t)=f_{h}^{-}(x)
$$

are $\mathcal{B}(\mathbb{R})$ measurable. Hence, f_{h} is Borel measurable for all $h>0$.
Solution (b): Note that

$$
\iint \frac{1}{h} \mathbf{1}_{[x, x+h]}(t)|f(t)| d \lambda(x) d \lambda(t)=\iint \frac{1}{h} \mathbf{1}_{[t-h, t]}(x)|f(t)| d \lambda(x) d \lambda(t)=\int|f(t)| d \lambda(t)<\infty .
$$

Hence, by Fubini's Theorem $f_{h} \in \mathcal{L}^{1}(\lambda)$ and

$$
\int\left|f_{h}(x)\right| d \lambda(x)=\iint \frac{1}{h} \mathbf{1}_{[x, x+h]}(t)|f(t)| d \lambda(x) d \lambda(t)=\int|f(x)| d \lambda(x)=\|f\|_{1}
$$

(5) Let (X, \mathcal{A}, μ) be a σ-finite measure space and $\left(A_{i}\right)$ a sequence in \mathcal{A} such that $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$.
(a) Show that $\mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$, i.e. the sequence $\left(\mathbf{1}_{A_{n}}\right)$ converges to 0 in measure.
(b) Show that for any $u \in \mathcal{L}^{1}(\mu)$, one has $u \mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$.
(c) Show that for any $u \in \mathcal{L}^{1}(\mu)$, one has

$$
\sup _{n} \int_{\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}}|u| \mathbf{1}_{A_{n}} d \mu=0 .
$$

(d) Show that $\lim _{n \rightarrow \infty} \int_{A_{n}} u d \mu=0$.

Proof (a): For any $0<\epsilon<1$ and any $A \in \mathcal{A}$ with $\mu(A)<\infty$, we have

$$
\mu\left(A \cap\left\{\mathbf{1}_{A_{n}}>\epsilon\right\}\right)=\mu\left(A \cap A_{n}\right) \leq \mu\left(A_{n}\right)
$$

Thus, $\lim \sup _{n \rightarrow \infty} \mu\left(A \cap\left\{\mathbf{1}_{A_{n}}>\epsilon\right\}\right)=0$ and hence $\lim _{n \rightarrow \infty} \mu\left(A \cap\left\{\mathbf{1}_{A_{n}}>\epsilon\right\}\right)=0$. This implies $\mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$.

Proof (b): Let $u \in \mathcal{L}^{1}(\mu)$. For any $\epsilon>0$ and any $A \in \mathcal{A}$ with $\mu(A)<\infty$, one has

$$
\mu\left(A \cap\left\{|u| \mathbf{1}_{A_{n}}>\epsilon\right\}\right)=\mu\left(A \cap A_{n} \cap\{|u|>\epsilon\}\right) \leq \mu\left(A_{n}\right) .
$$

This shows that $\lim _{n \rightarrow \infty} \mu\left(A \cap\left\{|u| \mathbf{1}_{A_{n}}>\epsilon\right\}\right)=0$, and hence $u \mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$.
Proof (c): Let $u \in \mathcal{L}^{1}(\mu)$. Note that $|u| \mathbf{1}_{A_{n}} \leq|u|$, thus the set $\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}$ is empty. By Theorem 10.9(ii), we have

$$
\int_{\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}}|u| \mathbf{1}_{A_{n}} d \mu=0
$$

for all n and hence $\sup _{j} \int_{\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}}|u| \mathbf{1}_{A_{n}} d \mu=0$.
(6) Let (X, \mathcal{A}, μ) be a measure space. Show that μ is σ-finite if and only if there exists $f \in L^{1}(\mu)$ which is strictly positive.

Proof: Assume there exists a function $f \in L^{1}(\mu)$ which is strictly positive. We need to find an exhausting sequence $F_{n} \uparrow X$ such that $\mu\left(F_{n}\right)<\infty$. To this end, let $F_{n}=\left\{x \in X: f(x) \geq \frac{1}{n}\right\}$. Then, $\left\{F_{n}\right\}$ is an increasing sequence of measurable sets such that $X=\{x \in X: f(x)>0\}=$ $\bigcup_{n=1}^{\infty} F_{n}$. By the Markov inequality $\mu\left(F_{n}\right) \leq n \int f d \mu<\infty$. Thus, μ is σ-finite.
Conversely, suppose μ is σ-finite and let $\left(F_{n}\right)$ be an exhausting sequence of finite measure. Define $E_{1}=F_{1}$, and $E_{n}=F_{n} \backslash F_{n-1}$ for $n \geq 2$. Then, $\left(E_{n}\right)_{n}$ is a disjoint sequence of measurable sets such that $\bigcup_{n=1}^{\infty} E_{n}=X$ and $\mu\left(E_{n}\right)<\infty$ for all $n \geq 1$. Define a function f on X by

$$
f(x)=\sum_{n=1}^{\infty} \frac{2^{-n}}{\mu\left(E_{n}\right)+1} \mathbf{1}_{E_{n}}(x) .
$$

Then, $f>0$, and by Beppo-Levi,

$$
\int_{X} f d \mu=\sum_{n=1}^{\infty} \frac{2^{-n}}{\mu\left(E_{n}\right)+1} \int_{X} \mathbf{1}_{E_{n}} d \mu=\sum_{n=1}^{\infty} \frac{2^{-n} \mu\left(E_{n}\right)}{\mu\left(E_{n}\right)+1} \leq \sum_{n=1}^{\infty} 2^{-n}=1<\infty .
$$

So that $f \in \mathcal{L}^{1}(\mu)$ is the required function.

