Measure and Integration: Solutions Practice Final II 2015-16

(1) Consider a measure space (X, \mathcal{A}, μ), and let $\left(f_{n}\right)_{n}$ be a sequence in $\mathcal{L}^{2}(\mu)$ which is bounded in the \mathcal{L}^{2} norm, i.e. there exists a constant $C>0$ such that $\left\|f_{n}\right\|_{2}<C$ for all $n \geq 1$.
(a) Prove that $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} \in \mathcal{L}_{\mathbb{R}}^{1}(\mu)$.
(b) Prove that $\lim _{n \rightarrow \infty} \frac{f_{n}}{n}=0 \mu$ a.e.

Proof (a): First observe that

$$
\sum_{n=1}^{\infty}\left\|\frac{f_{n}}{n}\right\|_{2}^{2}=\sum_{n=1}^{\infty} \frac{\left\|f_{n}\right\|_{2}^{2}}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{C^{2}}{n^{2}}<\infty
$$

Now, by Beppo-Levi and the above, we have

$$
\int \sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} d \mu=\sum_{n=1}^{\infty} \int\left(\frac{f_{n}}{n}\right)^{2} d \mu=\sum_{n=1}^{\infty}\left\|\frac{f_{n}}{n}\right\|_{2}^{2}<\infty
$$

Hence, $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} \in \mathcal{L}_{\mathbb{\mathbb { R }}}^{1}(\mu)$.
Proof (b): Since $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} \in \mathcal{L}_{\frac{\mathbb{R}}{}}^{1}(\mu)$, then $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2}<\infty \mu$ a.e. and as a result $\lim _{n \rightarrow \infty}\left(\frac{f_{n}}{n}\right)=0$ μ a.e.
(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty)), \lambda)$, where $\mathcal{B}((0, \infty))$ is the restriction of the Borel σ-algebra, and λ Lebesgue measure restricted to $(0, \infty)$. Determine the value of

$$
\lim _{n \rightarrow \infty} \int_{(0, n)} \frac{\cos \left(x^{5}\right)}{1+n x^{2}} d \lambda(x)
$$

Proof: Let $u_{n}(x)=\mathbf{1}_{(0, n)} \frac{\cos \left(x^{5}\right)}{1+n x^{2}}$ and

$$
g(x)= \begin{cases}1 & \text { if } 0<x \leq 1 \\ 1 / x^{2} & \text { if } x>1\end{cases}
$$

Then, $\lim _{n \rightarrow \infty} u_{n}(x)=0$ for all $x>0$, and $\left|u_{n}\right| \leq g$. Furthermore the function g is measurable, non-negative and the improper Riemann integrable on $(0, \infty)$ exists, it follows that it is Lebesgue integrable on $(0, \infty)$. By Lebesgue Dominated Convergence Theorem

$$
\lim _{n \rightarrow \infty} \int_{(0, n)} \frac{\cos \left(x^{5}\right)}{1+n x^{2}} d \lambda(x)=\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x)=\int \lim _{n \rightarrow \infty} u_{n}(x) d \lambda(x)=0
$$

(3) Let (X, \mathcal{A}, μ) be a finite measure space. Suppose $f_{n}, g_{n}, f, g \in \mathcal{M}(\mathcal{A})(n \geq 1)$ satify the following:
(i) $f_{n} \xrightarrow{\mu} f$,
(ii) $g_{n} \xrightarrow{\mu} g$,
(iii) $\left|f_{n}\right| \leq C$ for all n, where $C>0$.

Prove that $f_{n} g_{n} \xrightarrow{\mu} f g$.
Proof: Let $\epsilon>0$ and $\delta>0$, since μ is a finite measure, it is enough to show that there exists $N \geq 1$ such that

$$
\mu\left(\left\{x \in X:\left|f_{n} g_{n}-f g\right|>\epsilon\right\}\right)<\delta, \text { for all } n \geq N
$$

First note that

$$
\left|f_{n} g_{n}-f g\right| \leq\left|f_{n}\right|\left|g_{n}-g\right|+|g|\left|f_{n}-f\right|
$$

thus,
$\mu\left(\left\{x \in X:\left|f_{n} g_{n}-f g\right|>\epsilon\right\}\right) \leq \mu\left(\left\{x \in X:\left|f_{n}\right|\left|g_{n}-g\right|>\epsilon / 2\right\}\right)+\mu\left(\left\{x \in X:\left|g_{n}\right|\left|f_{n}-f\right|>\epsilon / 2\right\}\right)$.

Let $E_{n}=\{x \in X:|g|>n\}$, then $E_{1} \supseteq E_{2} \supseteq \cdots$, and since g is real valued we have $\bigcap_{n=1}^{\infty} E_{n}=\emptyset$. By finiteness of μ, we have

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=0
$$

Choose m large enough so that $\mu\left(E_{m}\right)<\delta / 3$. By properties (i) and (ii), there exists $N \geq 1$ so that for $n \geq N$,

$$
\mu\left(\left\{x \in X:\left|f_{n}-f\right|>\epsilon / 2 m\right\}\right)<\delta / 3, \text { and } \mu\left(\left\{x \in X:\left|g_{n}-g\right|>\epsilon / 2 C\right\}\right)<\delta / 3
$$

Then for all $n \geq N$,

$$
\mu\left(\left\{x \in X:\left|f_{n}\right|\left|g_{n}-g\right|>\epsilon / 2\right\}\right) \leq \mu\left(\left\{x \in X:\left|g_{n}-g\right|>\epsilon / 2 C\right\}\right)<\delta / 3
$$

and

$$
\mu\left(\left\{x \in X:|g|\left|f_{n}-f\right|>\epsilon / 2\right\}\right) \leq \mu\left(E_{m}\right)+\mu\left(\left\{x \in E_{m}^{c}:\left|f_{n}-f\right|>\epsilon / 2 m\right\}\right)<2 \delta / 3
$$

Therefore, $\mu\left(\left\{x \in X:\left|f_{n} g_{n}-f g\right|>\epsilon\right\}\right)<\delta$ for all $n \geq N$, and hence $f_{n} g_{n} \xrightarrow{\mu} f g$.
(4) Let (X, \mathcal{A}) be a measurable space and μ, ν are finite measure on \mathcal{A}. Show that there exists a function $f \in \mathcal{L}_{+}^{1}(\mu) \cap \mathcal{L}_{+}^{1}(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$
\int_{A}(1-f) d \mu=\int_{A} f d \nu
$$

Proof: First note that $\mu+\nu$ is a measure (Exercise 4.6(ii)), and that $\mu \ll \mu+\nu$. By using a standard argument (first checking indictor functions, then simple functions, then positive functions, then general integrable functions) one sees that for any $g \in \mathcal{L}^{1}(\mu+\nu)$ one has $g \in \mathcal{L}^{1}(\mu) \cap \mathcal{L}^{1}(\nu)$, and

$$
\int g d(\mu+\nu)=\int g d \mu+\int g d \nu
$$

Now the condition $\int_{A}(1-f) d \mu=\int_{A} f d \nu$ is equivalent to $\mu(A)=\int_{A} f d(\mu+\nu)$. Since $\mu \ll \mu+\nu$, then by Radon-Nikodym Theorem there exists $f \in \mathcal{L}_{+}^{1}(\mu+\nu)$ such that $\mu(A)=\int_{A} f d(\mu+\nu)$. Thus, $f \in \mathcal{L}_{+}^{1}(\mu) \cap \mathcal{L}_{+}^{1}(\nu)$ and $\int_{A}(1-f) d \mu=\int_{A} f d \nu$ for all $A \in \mathcal{A}$.
(5) Let $0<a<b$. Prove with the help of Tonelli's theorem (applied to the function $f(x, t)=e^{-x t}$) that $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$, where λ denotes Lebesgue measure.

Proof Let $f:[a, b] \times[0, \infty)$ be given by $f(x, t)=e^{-x t}$. Then f is continuous (hence measurable) and $f>0$. By Toneli's theorem

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)
$$

For each fixed $x \in[a, b]$, the function $t \rightarrow e^{-x t}$ is positive measurable and the improper Riemann integrable on $[0, \infty)$ exists, so that

$$
\int_{[0, \infty)} e^{-x t} d \lambda(t)=\int_{0}^{\infty} e^{-x t} d t=\frac{1}{x}
$$

Furthermore, the function $x \rightarrow \frac{1}{x}$ is measurable and Riemann integrable on $[a, b]$, thus

$$
\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)=\int_{[a, b]} \frac{1}{x} d \lambda(x)=\int_{a}^{b} \frac{1}{x} d x=\log (b / a)
$$

On the other hand,

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[0, \infty)} \int_{a}^{b} e^{-x t} d x d \lambda(t)=\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)
$$

Therefore, $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$.
(6) Let (X, \mathcal{A}, μ) be a finite measure space and $f_{n}, f \in \mathcal{M}(\mathcal{A}), n \geq 1$. Show that f_{n} converges to f in μ measure if and only if $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$.

Solution: First note that $\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \leq 1$ for all $n \geq 1$, and since $\mu(X)<\infty$ we have $1 \in \mathcal{L}^{1}(\mu)$.
Now assume that $f_{n} \xrightarrow{\mu} f$, and let $\epsilon, \delta>0$, then there exists N such that

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\delta\right\}\right)<\epsilon, \text { for all } n \geq N .
$$

Let $A=\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\delta\right\}$, then for all $n \geq N$

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{A} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{A^{c}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{A} 1 d \mu+\int_{A^{c}} \delta d \mu .
$$

Thus, for all $n \geq N$

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \epsilon+\delta \mu(X) .
$$

Thus, $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$.
Conversely, assume $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$, and let $\epsilon>0$. There exists N such that

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\epsilon^{2} /(1+\epsilon), \quad \text { for all } n \geq N
$$

Observe first that

$$
\left|f_{n}-f\right|>\epsilon \Longleftrightarrow \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}>\frac{\epsilon}{1+\epsilon} .
$$

Thus, by Markov Inequality, we have for all $n \geq N$
$\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=\mu\left(\left\{x \in X: \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}>\frac{\epsilon}{1+\epsilon}\right\}\right) \leq \frac{1+\epsilon}{\epsilon} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\epsilon$.
Thus, $f_{n} \xrightarrow{\mu} f$.

