Measure and Integration: Solutions Practice Final II 2015-16

- (1) Consider a measure space (X, \mathcal{A}, μ) , and let $(f_n)_n$ be a sequence in $\mathcal{L}^2(\mu)$ which is bounded in the \mathcal{L}^2 norm, i.e. there exists a constant C > 0 such that $||f_n||_2 < C$ for all $n \ge 1$. (a) Prove that $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^1_{\mathbb{R}}(\mu)$.

 - (b) Prove that $\lim_{n \to \infty} \frac{f_n}{n} = 0 \ \mu$ a.e.

Proof (a): First observe that

$$\sum_{n=1}^{\infty} ||\frac{f_n}{n}||_2^2 = \sum_{n=1}^{\infty} \frac{||f_n||_2^2}{n^2} \le \sum_{n=1}^{\infty} \frac{C^2}{n^2} < \infty.$$

Now, by Beppo-Levi and the above, we have

$$\int \sum_{n=1}^{\infty} (\frac{f_n}{n})^2 d\mu = \sum_{n=1}^{\infty} \int (\frac{f_n}{n})^2 d\mu = \sum_{n=1}^{\infty} ||\frac{f_n}{n}||_2^2 < \infty.$$

Hence, $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^1_{\mathbb{R}}(\mu).$

Proof (b): Since $\sum_{n=1}^{\infty} \left(\frac{f_n}{n}\right)^2 \in \mathcal{L}_{\mathbb{R}}^{\frac{1}{2}}(\mu)$, then $\sum_{n=1}^{\infty} \left(\frac{f_n}{n}\right)^2 < \infty \mu$ a.e. and as a result $\lim_{n \to \infty} \left(\frac{f_n}{n}\right) = 0$ μ a.e.

(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty)), \lambda)$, where $\mathcal{B}((0, \infty))$ is the restriction of the Borel σ -algebra, and λ Lebesgue measure restricted to $(0,\infty)$. Determine the value of

$$\lim_{n \to \infty} \int_{(0,n)} \frac{\cos(x^5)}{1 + nx^2} \, d\lambda(x)$$

Proof: Let $u_n(x) = \mathbf{1}_{(0,n)} \frac{\cos(x^5)}{1+nx^2}$ and

$$g(x) = \begin{cases} 1 & \text{if } 0 < x \le 1 \\ \\ 1/x^2 & \text{if } x > 1. \end{cases}$$

Then, $\lim_{n\to\infty} u_n(x) = 0$ for all x > 0, and $|u_n| \le g$. Furthermore the function g is measurable, non-negative and the improper Riemann integrable on $(0, \infty)$ exists, it follows that it is Lebesgue integrable on $(0, \infty)$. By Lebesgue Dominated Convergence Theorem

$$\lim_{n \to \infty} \int_{(0,n)} \frac{\cos(x^5)}{1 + nx^2} d\lambda(x) = \lim_{n \to \infty} \int u_n(x) d\lambda(x) = \int \lim_{n \to \infty} u_n(x) d\lambda(x) = 0.$$

- (3) Let (X, \mathcal{A}, μ) be a finite measure space. Suppose $f_n, g_n, f, g \in \mathcal{M}(\mathcal{A})$ $(n \ge 1)$ satisfy the following: (i) $f_n \xrightarrow{\mu} f$, (ii) $g_n \xrightarrow{\mu} g$, (iii) $|f_n| \leq C$ for all n, where C > 0.

 - Prove that $f_n g_n \xrightarrow{\mu} f g$.

Proof: Let $\epsilon > 0$ and $\delta > 0$, since μ is a finite measure, it is enough to show that there exists $N \geq 1$ such that

 $\mu(\{x \in X : |f_n g_n - fg| > \epsilon\}) < \delta, \text{ for all } n \ge N.$

First note that

$$|f_n g_n - fg| \le |f_n| |g_n - g| + |g| |f_n - f|,$$

thus,

$$\mu(\{x \in X : |f_n g_n - fg| > \epsilon\}) \le \mu(\{x \in X : |f_n||g_n - g| > \epsilon/2\}) + \mu(\{x \in X : |g_n||f_n - f| > \epsilon/2\}).$$

Let $E_n = \{x \in X : |g| > n\}$, then $E_1 \supseteq E_2 \supseteq \cdots$, and since g is real valued we have $\bigcap_{n=1}^{\infty} E_n = \emptyset$. By finiteness of μ , we have

$$\lim_{n \to \infty} \mu(E_n) = \mu(\bigcap_{n=1}^{\infty} E_n) = 0.$$

Choose m large enough so that $\mu(E_m) < \delta/3$. By properties (i) and (ii), there exists $N \ge 1$ so that for $n \ge N$,

$$\mu(\{x \in X : |f_n - f| > \epsilon/2m\}) < \delta/3, \text{ and } \mu(\{x \in X : |g_n - g| > \epsilon/2C\}) < \delta/3.$$

Then for all $n \ge N$,

$$\mu(\{x \in X : |f_n||g_n - g| > \epsilon/2\}) \le \mu(\{x \in X : |g_n - g| > \epsilon/2C\}) < \delta/3,$$

and

$$\mu(\{x \in X : |g||f_n - f| > \epsilon/2\}) \le \mu(E_m) + \mu(\{x \in E_m^c : |f_n - f| > \epsilon/2m\}) < 2\delta/3.$$

Therefore, $\mu(\{x \in X : |f_n g_n - fg| > \epsilon\}) < \delta$ for all $n \ge N$, and hence $f_n g_n \xrightarrow{\mu} fg$.

(4) Let (X, \mathcal{A}) be a measurable space and μ, ν are finite measure on \mathcal{A} . Show that there exists a function $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$\int_{A} (1-f) \, d\mu = \int_{A} f \, d\nu.$$

Proof: First note that $\mu + \nu$ is a measure (Exercise 4.6(ii)), and that $\mu \ll \mu + \nu$. By using a standard argument (first checking indictor functions, then simple functions, then positive functions, then general integrable functions) one sees that for any $g \in \mathcal{L}^1(\mu + \nu)$ one has $g \in \mathcal{L}^1(\mu) \cap \mathcal{L}^1(\nu)$, and

$$\int g \, d(\mu + \nu) = \int g \, d\mu + \int g \, d\nu.$$

Now the condition $\int_A (1-f) d\mu = \int_A f d\nu$ is equivalent to $\mu(A) = \int_A f d(\mu+\nu)$. Since $\mu \ll \mu+\nu$, then by Radon-Nikodym Theorem there exists $f \in \mathcal{L}^1_+(\mu+\nu)$ such that $\mu(A) = \int_A f d(\mu+\nu)$. Thus, $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ and $\int_A (1-f) d\mu = \int_A f d\nu$ for all $A \in \mathcal{A}$.

(5) Let 0 < a < b. Prove with the help of Tonelli's theorem (applied to the function $f(x,t) = e^{-xt}$) that $\int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$, where λ denotes Lebesgue measure.

Proof Let $f : [a,b] \times [0,\infty)$ be given by $f(x,t) = e^{-xt}$. Then f is continuous (hence measurable) and f > 0. By Toneli's theorem

$$\int_{[0,\infty)} \int_{[a,b]} e^{-xt} d\lambda(x) \, d\lambda(t) = \int_{[a,b]} \int_{[0,\infty)} e^{-xt} d\lambda(t) \, d\lambda(x).$$

For each fixed $x \in [a, b]$, the function $t \to e^{-xt}$ is positive measurable and the improper Riemann integrable on $[0, \infty)$ exists, so that

$$\int_{[0,\infty)} e^{-xt} d\lambda(t) = \int_0^\infty e^{-xt} dt = \frac{1}{x}.$$

Furthermore, the function $x \to \frac{1}{x}$ is measurable and Riemann integrable on [a, b], thus

$$\int_{[a,b]} \int_{[0,\infty)} e^{-xt} d\lambda(t) \, d\lambda(x) = \int_{[a,b]} \frac{1}{x} \, d\lambda(x) = \int_a^b \frac{1}{x} \, dx = \log(b/a)$$

On the other hand,

$$\int_{[0,\infty)} \int_{[a,b]} e^{-xt} d\lambda(x) \, d\lambda(t) = \int_{[0,\infty)} \int_a^b e^{-xt} dx \, d\lambda(t) = \int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t).$$

Therefore,
$$\int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a).$$

(6) Let (X, \mathcal{A}, μ) be a finite measure space and $f_n, f \in \mathcal{M}(\mathcal{A}), n \ge 1$. Show that f_n converges to f in μ measure **if and only if** $\lim_{n \to \infty} \int \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0$.

Solution: First note that $\frac{|f_n - f|}{1 + |f_n - f|} \le 1$ for all $n \ge 1$, and since $\mu(X) < \infty$ we have $1 \in \mathcal{L}^1(\mu)$. Now assume that $f_n \xrightarrow{\mu} f,$ and let $\epsilon, \delta > 0$, then there exists N such that $\mu(\{x \in X : |f_n(x) - f(x)| > \delta\}) < \epsilon, \text{ for all } n \ge N.$

Let $A = \{x \in X : |f_n(x) - f(x)| > \delta\}$, then for all $n \ge N$

$$\int \frac{|f_n - f|}{1 + |f_n - f|} d\mu = \int_A \frac{|f_n - f|}{1 + |f_n - f|} d\mu + \int_{A^c} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \le \int_A 1 d\mu + \int_{A^c} \delta d\mu.$$
Thus, for all $n \ge N$

$$\int \frac{|f_n - f|}{1 + |f_n - f|} d\mu \le \epsilon + \delta\mu(X).$$
Thus, $\lim_{n \to \infty} \int \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0.$
Conversely assume $\lim_{n \to \infty} \int \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0$.

Conversely, assume $\lim_{n\to\infty} \int \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0$, and let $\epsilon > 0$. There exists N such that $\int \frac{|f_n - f|}{1 + |f_n - f|} \, d\mu < \epsilon^2 / (1 + \epsilon), \quad \text{for all } n \ge N.$

Observe first that

$$|f_n - f| > \epsilon \iff \frac{|f_n - f|}{1 + |f_n - f|} > \frac{\epsilon}{1 + \epsilon}$$

Thus, by Markov Inequality, we have for all $n \ge N$

$$\mu(\{x \in X : |f_n(x) - f(x)| > \epsilon\}) = \mu(\{x \in X : \frac{|f_n - f|}{1 + |f_n - f|} > \frac{\epsilon}{1 + \epsilon}\}) \le \frac{1 + \epsilon}{\epsilon} \int \frac{|f_n - f|}{1 + |f_n - f|} \, d\mu < \epsilon.$$

Thus, $f_n \xrightarrow{\mu} f$.