Practice Final Measure and Integration 2014-15

(1) Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$.
(a) Show that if f is any non-negative measurable function on (E, \mathcal{B}), then $\int_{E} f d \mu \leq \int_{E} f d \nu$.
(b) Prove that if ν is a finite measure, then $\mathcal{L}^{2}(\nu) \subseteq \mathcal{L}^{1}(\mu)$.

Proof (a) Suppose first that $f=1_{A}$ is the indicator function of some set $A \in \mathcal{B}$. Then

$$
\int_{E} f d \mu=\mu(A) \leq \nu(A)=\int_{E} f d \nu
$$

Suppose now that $f=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable step function. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k} \nu\left(A_{k}\right)=\int_{E} f d \nu
$$

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative measurable step functions f_{n} such that $f_{n} \uparrow f$. By Beppo-Levi,

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

Proof (b) From part (a) we see that if $f \in \mathcal{L}^{1}(\nu)$, then $f \in \mathcal{L}^{1}(\mu)$, i.e. $\mathcal{L}^{1}(\nu) \subseteq \mathcal{L}^{1}(\mu)$. If ν is a finite measure, then by Exercise 12.1 (ii) and the above, we have $\mathcal{L}^{2}(\nu) \subseteq \mathcal{L}^{1}(\nu) \subseteq L^{1}(\mu)$.
(2) Consider the measure space $((0,1], \mathcal{B}((0,1]), \lambda)$, where $\mathcal{B}((0,1])$ and λ are the restrictions of the Borel σ-algebra and Lebesgue measure to the interval $(0,1]$. Determine the value of

$$
\lim _{n \rightarrow \infty} \int_{(0,1]} e^{1 / x}\left(1+n^{2} x\right)^{-1} \sin \left(n e^{-1 / x} d \lambda(x)\right.
$$

Proof: Let $u_{n}(x)=e^{1 / x}\left(1+n^{2} x\right)^{-1} \sin \left(n e^{-1 / x}\right.$, then $\lim _{n \rightarrow \infty} u_{n}(x)=0$ for all $x \in(0,1]$. Since $|\sin y| \leq y$ for all $y \geq 0$, we have

$$
\left|u_{n}(x)\right| \leq e^{1 / x}\left(1+n^{2} x\right)^{-1} n e^{-1 / x}=\frac{n}{1+n^{2} x}=\frac{1}{\sqrt{x}} \cdot \frac{n \sqrt{x}}{1+n^{2} x} \leq \frac{1}{\sqrt{x}}
$$

Since the function $\frac{1}{\sqrt{x}}$ is positive, measurable and the improper Riemann integrable on $(0,1]$ exists, it follows that it is Lebesgue integrable on $(0,1]$. By Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0,1]} e^{1 / x}\left(1+n^{2} x\right)^{-1} \sin \left(n e^{-1 / x} d \lambda(x)\right. & =\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x) \\
& =\int \lim _{n \rightarrow \infty} u_{n}(x) d \lambda(x)=0
\end{aligned}
$$

(3) Let (X, \mathcal{F}, μ) be a finite measure space. Assume $f \in \mathcal{L}^{2}(\mu)$ satisfies $0<\|f\|_{2}<\infty$, and let $A=\{x \in X: f(x) \neq 0\}$. Show that

$$
\mu(A) \geq \frac{\left(\int f d \mu\right)^{2}}{\int f^{2} d \mu}
$$

Solution: Since $f=0$ on A^{c}, we have $\int f d \mu=\int f \mathbf{1}_{A} d \mu$. Since μ is a finite measure and $\left(\mathbf{1}_{A}\right)^{2}=\mathbf{1}_{A}$, then

$$
\underset{1}{\left\|\mathbf{1}_{A}\right\|_{2}=(\mu(A))^{1 / 2}<\infty .}
$$

Thus, $\mathbf{1}_{A} \in \mathcal{L}^{2}(\mu)$ and by Hölder's inequality

$$
\int f d \mu \leq\|f\|_{2}\left\|\mathbf{1}_{A}\right\|_{2}=\mid f \|_{2}(\mu(A))^{1 / 2}
$$

Squaring both sides and dividing by

$$
\|f\|_{2}^{2}=\int f^{2} d \mu(>0)
$$

we get

$$
\mu(A) \geq \frac{\left(\int f d \mu\right)^{2}}{\int f^{2} d \mu}
$$

bigskip
(4) Let $1 \leq p<\infty$, and $\operatorname{suppose}(X, \mathcal{A}, \mu)$ is a finite measure space. Let $\left(f_{n}\right)_{n} \in \mathcal{L}^{p}(\mu)$ be a sequence converging to f in μ measure.
(a) Show that

$$
\int|f|^{p} d \mu \leq \liminf _{n \rightarrow \infty} \int\left|f_{n}\right|^{p} d \mu
$$

(b) Show that $\lim _{n \rightarrow \infty} n^{p} \mu(\{|f|>n\})=0$.

Solution (a): By definition of the liminf, we can find a subsequence $\left(f_{n(j)}\right)_{j}$ such that

$$
\lim _{j \rightarrow \infty} \int\left|f_{n(j)}\right|^{p} d \mu=\liminf _{n \rightarrow \infty} \int\left|f_{n}\right|^{p} d \mu
$$

By Exercise 16.10(iii), the sequence $\left(\left|f_{n}\right|^{p}\right)$ converges in μ measure to $|f|^{p}$. By Exercise 16.10 (ii) applied to the sequence $\left(\left|f_{n}\right|^{p}\right)$ and the fact that $\mu(X)<\infty$, there exists a subsequence $\left(f_{m(j)}\right)$ of $\left(f_{n(j)}\right)_{j}$ such that
(i) $\left(\left|f_{m(j)}\right|^{p}\right)$ converges μ a.e. to $|f|^{p}$, and
(ii) $\lim _{j \rightarrow \infty} \int\left|f_{m(j)}\right|^{p} d \mu=\liminf _{n \rightarrow \infty} \int\left|f_{n}\right|^{p} d \mu$.

By Fatou's Lemma
$\int|f|^{p} d \mu=\int \liminf _{j \rightarrow \infty}\left|f_{m(j)}\right|^{p} d \mu \leq \liminf _{j \rightarrow \infty} \int\left|f_{m(j)}\right|^{p} d \mu=\lim _{j \rightarrow \infty} \int\left|f_{m(j)}\right|^{p} d \mu=\liminf _{n \rightarrow \infty} \int\left|f_{n}\right|^{p} d \mu$.
Solution (b): Note that $f \in \mathcal{L}^{p}(\mu)$ and hence by Corollary 10.13 ,

$$
\mu\left(\left\{|f|^{p}=\infty\right\}\right)=\mu(\{|f|=\infty\})=0
$$

Thus,

$$
\lim _{n \rightarrow \infty}|f|^{p} \mathbf{1}_{\{|f|>n\}}=|f|^{p} \mathbf{1}_{\{|f|=\infty\}}=0 \mu \text { a.e. }
$$

Since for each $n,|f|^{p} \mathbf{1}_{\{|f|>n\}} \leq|f|^{p}$ and $|f|^{p} \in \mathcal{L}^{1}(\mu)$, we have by Lebesgue Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int|f|^{p} \mathbf{1}_{\{|f|>n\}} d \mu=0
$$

Now,

$$
n^{p} \mu(\{|f|>n\})=\int n^{p} \mathbf{1}_{\{|f|>n\}} d \mu \leq \int|f|^{p} \mathbf{1}_{\{|f|>n\}} d \mu
$$

and from the above we get $\lim _{n \rightarrow \infty} n^{p} \mu(\{|f|>n\})=0$.
(5) Let $E=\{(x, y): y<x<1,, 0<y<1\}$. We consider on E the restriction of the product Borel σ-algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right)$.
(a) Show that f is $\lambda \times \lambda$ integrable on E.
(b) Define $F:(0,1) \rightarrow \mathbb{R}$ by $F(y)=\int_{(y, 1)} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d \lambda(x)$. Determine the value of

$$
\int F(y) d \lambda(y)
$$

Solution (a) : Notice that f is continuous, and hence measurable. Furthermore, $|f(x, y)| \leq$ $x^{-3 / 2}$. The function $g(x, y)=x^{-3 / 2}$ is non-negative and measurable on E, hence by Tonelli's Theorem,

$$
\begin{aligned}
\int_{E}|f(x, y)| d(\lambda \times \lambda)(x, y) & \leq \int_{E} g(x, y) d(\lambda \times \lambda)(x, y) \\
& =\int_{0}^{1} \int_{0}^{x} x^{-3 / 2} d y d x \\
& =\int_{0}^{1} x^{-1 / 2} d x=2
\end{aligned}
$$

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the Lebesgue integral. This shows that f is $\lambda \times \lambda$ integrable on E.

Solution (b) : By Fubini's Theorem

$$
\iint f(x, y) d \lambda(x) d \lambda(y)=\iint f(x, y) d \lambda(y) d \lambda(x)
$$

Notice that for each fixed $0<x<1$, the function $f(x, y)$ is Riemann-integrable in y on the interval ($0, x$) and

$$
\int_{0}^{x} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d y=\frac{2}{\pi} x^{-1 / 2}
$$

and the function $\frac{2}{\pi} x^{-1 / 2}$ is Riemann-integrable in x on the interval $(0,1)$, and

$$
\int_{0}^{1} \frac{2}{\pi} x^{-1 / 2} d x=\frac{4}{\pi}
$$

Thus,

$$
\int F(y) d \lambda(y)=\iint f(x, y) d \lambda(x) d \lambda(y)=\int_{0}^{1} \int_{0}^{x} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d y d x=\frac{4}{\pi}
$$

(6) Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X)=1$) and let $\left\{f_{n}\right\}$ be a sequence in $\mathcal{L}^{1}(\mu)$ such that $\int_{X}\left|f_{n}\right| d \mu=n$ for all $n \geq 1$. Let

$$
A_{n}=\left\{x:\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| \geq n^{3}\right\}
$$

(a) Show that $\mu\left(\bigcap_{m \geq 1} \bigcup_{n \geq m} A_{n}\right)=0$.
(b) Use part (a) to show that for every $\epsilon>0$ there exists $m_{0} \geq 1$ such that

$$
\mu\left\{x \in X:\left|f_{n}(x)\right|<n^{3}+n, \text { for all } n \geq m_{0}\right\}>1-\epsilon
$$

Proof (a) By Markov Inequality we have

$$
\mu\left(A_{n}\right) \leq \frac{1}{n^{3}} \int_{X}\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| d \mu \leq \frac{2 n}{n^{3}}=\frac{2}{n^{2}}
$$

Since $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{2}{n^{2}}<\infty$, it follows by Borel-Cantelli Lemma (Exercise 6.9) that

$$
\mu\left(\bigcap_{m \geq 1} \bigcup_{n \geq m} A_{n}\right)=0
$$

Proof (b) By part (a) we have $\mu\left(\bigcup_{m \geq 1} \bigcap_{n \geq m} A_{n}^{c}\right)=1$. By Theorem 4.4(iii),

$$
\lim _{m \rightarrow \infty} \mu\left(\bigcap_{n \geq m} A_{n}^{c}\right)=\mu\left(\bigcup_{m \geq 1} \bigcap_{n \geq m} A_{n}^{c}\right)=1
$$

Hence, given $\epsilon>0$ there exists $m_{0} \geq 1$ such that $\mu\left(\bigcap_{n \geq m_{0}} A_{n}^{c}\right)>1-\epsilon$. But for $x \in \bigcap_{n \geq m_{0}} A_{n}^{c}$ one has for $n \geq m_{0}$,

$$
\left|f_{n}(x)\right|-\left|\int f_{n} d \mu\right| \leq\left|f_{n}(x)-\int f_{n}(x) d \mu\right|<n^{3}
$$

and thus, $\left|f_{n}(x)\right|<n^{3}+n$. This implies that

$$
\mu\left\{x \in X:\left|f_{n}(x)\right|<n^{3}+n, \text { for all } n \geq m_{0}\right\} \geq \mu\left(\bigcap_{n \geq m_{0}} A_{n}^{c}\right)>1-\epsilon
$$

(7) Suppose μ and ν are finite measures on the measurable space (X, \mathcal{A}) which have the same null sets. Show that there exists a measurable function f such that $0<f<\infty \mu$ a.e. and ν a.e. and for all $A \in \mathcal{A}$ one has

$$
\nu(A)=\int_{A} f d \mu \text { and } \mu(A)=\int_{A} \frac{1}{f} d \nu
$$

Proof The fact that μ and ν have the same null sets implies that $\nu \ll \mu$ and $\mu \ll \nu$ (in fact in this case we refer to μ and ν as equivalent measure). So the notions μ a.e. and ν a.e. are the same. By Radon-Nikodym Theorem there exist $f \in \mathcal{L}_{+}^{1}(\mu)$ and $g \in \mathcal{L}_{+}^{1}(\nu)$ such that for all $A \in \mathcal{A}$,

$$
\nu(A)=\int_{A} f d \mu \text { and } \mu(A)=\int_{A} g d \nu .
$$

Furthermore, the functions f and g are unique μ and ν a.e. By Exercise 1 of the last set of exercises exercisesRadonNikodym.pdf, we have for any $A \in \mathcal{A}$,

$$
\nu(A)=\int_{A} 1 d \nu=\int_{A} f d \mu=\int_{A} f g d \nu
$$

By Corollary 10.14(i) this implies that $1=f g \nu$ and hence μ a.e. From this and Corollary 10.13 we conclude that $0<f<\infty$ and $g=1 / f \mu$ and ν a.e.
(8) Let (X, \mathcal{A}, μ) be a finite measure space and $f_{n}, f \in \mathcal{M}(\mathcal{A}), n \geq 1$. Show that f_{n} converges to f in μ measure if and only if $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$.

Solution: First note that $\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \leq 1$ for all $n \geq 1$, and since $\mu(X)<\infty$ we have $1 \in \mathcal{L}^{1}(\mu)$.
Now assume that $f_{n} \xrightarrow{\mu} f$, and let $\epsilon, \delta>0$, then there exists N such that

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\delta\right\}\right)<\epsilon, \text { for all } n \geq N
$$

Let $A=\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\delta\right\}$, then for all $n \geq N$

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{A} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{A^{c}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{A} 1 d \mu+\int_{A^{c}} \delta d \mu .
$$

Thus, for all $n \geq N$

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \epsilon+\delta \mu(X)
$$

Thus, $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$.
Conversely, assume $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$, and let $\epsilon>0$. There exists N such that

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\epsilon^{2} /(1+\epsilon), \text { for all } n \geq N
$$

Observe first that

$$
\left|f_{n}-f\right|>\epsilon \Longleftrightarrow \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}>\frac{\epsilon}{1+\epsilon}
$$

Thus, by Markov Inequality, we have for all $n \geq N$

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=\mu\left(\left\{x \in X: \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}>\frac{\epsilon}{1+\epsilon}\right\}\right) \leq \frac{1+\epsilon}{\epsilon} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\epsilon
$$

Thus, $f_{n} \xrightarrow{\mu} f$.

