Practice Final Measure and Integration I 12015-16

1. Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$.
(a) Show that if f is any non-negative measurable function on (E, \mathcal{B}), then $\int_{E} f d \mu \leq$ $\int_{E} f d \nu$.
(b) Prove that if ν is a finite measure, then $\mathcal{L}^{2}(\nu) \subseteq \mathcal{L}^{1}(\mu)$.

Proof (a) Suppose first that $f=1_{A}$ is the indicator function of some set $A \in \mathcal{B}$. Then

$$
\int_{E} f d \mu=\mu(A) \leq \nu(A)=\int_{E} f d \nu
$$

Suppose now that $f=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable step function. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k} \nu\left(A_{k}\right)=\int_{E} f d \nu .
$$

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative measurable step functions f_{n} such that $f_{n} \uparrow f$. By Beppo-Levi,

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

Proof (b) From part (a) we see that if $f \in \mathcal{L}^{1}(\nu)$, then $f \in \mathcal{L}^{1}(\mu)$, i.e. $\mathcal{L}^{1}(\nu) \subseteq$ $\mathcal{L}^{1}(\mu)$. If ν is a finite measure, then by Exercise 12.1 (ii) and the above, we have $\mathcal{L}^{2}(\nu) \subseteq \mathcal{L}^{1}(\nu) \subseteq L^{1}(\mu)$.
2. Consider the measure space $((0,1], \mathcal{B}((0,1]), \lambda)$, where $\mathcal{B}((0,1])$ and λ are the restrictions of the Borel σ-algebra and Lebesgue measure to the interval $(0,1]$. Determine the value of

$$
\lim _{n \rightarrow \infty} \int_{(0,1]} e^{1 / x}\left(1+n^{2} x\right)^{-1} \sin \left(n e^{-1 / x} d \lambda(x)\right.
$$

Proof: Let $u_{n}(x)=e^{1 / x}\left(1+n^{2} x\right)^{-1} \sin \left(n e^{-1 / x}\right.$, then $\lim _{n \rightarrow \infty} u_{n}(x)=0$ for all $x \in(0,1]$. Since $|\sin y| \leq y$ for all $y \geq 0$, we have

$$
\left|u_{n}(x)\right| \leq e^{1 / x}\left(1+n^{2} x\right)^{-1} n e^{-1 / x}=\frac{n}{1+n^{2} x}=\frac{1}{\sqrt{x}} \cdot \frac{n \sqrt{x}}{1+n^{2} x} \leq \frac{1}{\sqrt{x}} .
$$

Since the function $\frac{1}{\sqrt{x}}$ is positive, measurable and the improper Riemann integrable on $(0,1]$ exists, it follows that it is Lebesgue integrable on $(0,1]$. By Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0,1]} e^{1 / x}\left(1+n^{2} x\right)^{-1} \sin \left(n e^{-1 / x} d \lambda(x)\right. & =\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x) \\
& =\int \lim _{n \rightarrow \infty} u_{n}(x) d \lambda(x)=0
\end{aligned}
$$

3. Let (X, \mathcal{F}, μ) be a finite measure space. Assume $f \in \mathcal{L}^{2}(\mu)$ satisfies $0<\|f\|_{2}<\infty$, and let $A=\{x \in X: f(x) \neq 0\}$. Show that

$$
\mu(A) \geq \frac{\left(\int f d \mu\right)^{2}}{\int f^{2} d \mu}
$$

Solution: Since $f=0$ on A^{c}, we have $\int f d \mu=\int f \mathbf{1}_{A} d \mu$. Since μ is a finite measure and $\left(\mathbf{1}_{A}\right)^{2}=\mathbf{1}_{A}$, then

$$
\left\|\mathbf{1}_{A}\right\|_{2}=(\mu(A))^{1 / 2}<\infty
$$

Thus, $\mathbf{1}_{A} \in \mathcal{L}^{2}(\mu)$ and by Hölder's inequality

$$
\int f d \mu \leq\|f\|_{2}\left\|\mathbf{1}_{A}\right\|_{2}=\mid f \|_{2}(\mu(A))^{1 / 2}
$$

Squaring both sides and dividing by

$$
\|f\|_{2}^{2}=\int f^{2} d \mu(>0)
$$

we get

$$
\mu(A) \geq \frac{\left(\int f d \mu\right)^{2}}{\int f^{2} d \mu}
$$

4. Let $E=\{(x, y): y<x<1,, 0<y<1\}$. We consider on E the restriction of the product Borel σ-algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right)$.
(a) Show that f is $\lambda \times \lambda$ integrable on E.
(b) Define $F:(0,1) \rightarrow \mathbb{R}$ by $F(y)=\int_{(y, 1)} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d \lambda(x)$. Determine the value of

$$
\int F(y) d \lambda(y)
$$

Solution (a) : Notice that f is continuous, and hence measurable. Furthermore, $|f(x, y)| \leq x^{-3 / 2}$. The function $g(x, y)=x^{-3 / 2}$ is non-negative and measurable on E, hence by Tonelli's Theorem,

$$
\begin{aligned}
\int_{E}|f(x, y)| d(\lambda \times \lambda)(x, y) & \leq \int_{E} g(x, y) d(\lambda \times \lambda)(x, y) \\
& =\int_{0}^{1} \int_{0}^{x} x^{-3 / 2} d y d x \\
& =\int_{0}^{1} x^{-1 / 2} d x=2
\end{aligned}
$$

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the Lebesgue integral. This shows that f is $\lambda \times \lambda$ integrable on E.

Solution (b) : By Fubini's Theorem

$$
\iint f(x, y) d \lambda(x) d \lambda(y)=\iint f(x, y) d \lambda(y) d \lambda(x)
$$

Notice that for each fixed $0<x<1$, the function $f(x, y)$ is Riemann-integrable in y on the interval $(0, x)$ and

$$
\int_{0}^{x} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d y=\frac{2}{\pi} x^{-1 / 2}
$$

and the function $\frac{2}{\pi} x^{-1 / 2}$ is Riemann-integrable in x on the interval $(0,1)$, and

$$
\int_{0}^{1} \frac{2}{\pi} x^{-1 / 2} d x=\frac{4}{\pi}
$$

Thus,

$$
\int F(y) d \lambda(y)=\iint f(x, y) d \lambda(x) d \lambda(y)=\int_{0}^{1} \int_{0}^{x} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d y d x=\frac{4}{\pi} .
$$

5. Let (X, \mathcal{A}, μ) be a σ-finite measure space, and $\left(f_{j}\right)$ a uniformly integrable sequence of measurable functions. Define $F_{k}=\sup _{1 \leq j \leq k}\left|f_{j}\right|$ for $k \geq 1$.
(a) Show that for any $w \in \mathcal{M}^{+}(\mathcal{A})$,

$$
\int_{\left\{F_{k}>w\right\}} F_{k} d \mu \leq \sum_{j=1}^{k} \int_{\left\{\left|f_{j}\right|>w\right\}}\left|f_{j}\right| d \mu .
$$

(b) Show that for every $\epsilon>0$, there exists a $w_{\epsilon} \in \mathcal{L}_{+}^{1}(\mu)$ such that for all $k \geq 1$

$$
\int_{X} F_{k} d \mu \leq \int_{X} w_{\epsilon} d \mu+k \epsilon
$$

(c) Show that

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu=0
$$

Proof (a) Let $w \in \mathcal{M}^{+}(\mathcal{A})$, then

$$
\begin{aligned}
\int_{\left\{F_{k}>w\right\}} F_{k} d \mu & \leq \sum_{j=1}^{k} \int_{\left\{F_{k}>w\right\} \cap\left\{\left|f_{j}\right|=F_{k}\right\}} F_{k} d \mu \\
& \leq \sum_{j=1}^{k} \int_{\left\{\left|f_{j}\right|>w\right\}}\left|f_{j}\right| d \mu .
\end{aligned}
$$

Proof (b) Let $\epsilon>0$. By uniform integrability of the sequence $\left(f_{j}\right)$ there exists $w_{\epsilon} \in \mathcal{L}^{+}(\mu)$ such that

$$
\int_{\left\{\left|f_{j}\right|>w_{\epsilon}\right\}}\left|f_{j}\right| d \mu<\epsilon
$$

for all $j \geq 1$. By part (a)

$$
\int_{\left\{F_{k}>w_{\epsilon}\right\}} F_{k} d \mu \leq \sum_{j=1}^{k} \int_{\left\{\left|f_{j}\right|>w_{\epsilon}\right\}}\left|f_{j}\right| d \mu \leq k \epsilon .
$$

Now,

$$
\begin{aligned}
\int_{X} F_{k} d \mu & =\int_{\left\{F_{k}>w_{\epsilon}\right\}} F_{k} d \mu+\int_{\left\{F_{k} \leq w_{\epsilon}\right\}} F_{k} d \mu \\
& \leq k \epsilon+\int_{X} w_{\epsilon} d \mu .
\end{aligned}
$$

Proof (c) For any $\epsilon>0$, by part (b),

$$
\frac{1}{k} \int_{X} F_{k} d \mu \leq \frac{1}{k} \int_{X} w_{\epsilon} d \mu+\epsilon .
$$

Thus,

$$
\limsup _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu \leq \epsilon,
$$

for any ϵ. Since $F_{k} \geq 0$, we see that

$$
\limsup _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu=\lim _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu=0
$$

6. Suppose μ and ν are finite measures on the measurable space (X, \mathcal{A}) which have the same null sets. Show that there exists a measurable function f such that $0<f<\infty$ μ a.e. and ν a.e. and for all $A \in \mathcal{A}$ one has

$$
\nu(A)=\int_{A} f d \mu \text { and } \mu(A)=\int_{A} \frac{1}{f} d \nu .
$$

Proof The fact that μ and ν have the same null sets implies that $\nu \ll \mu$ and $\mu \ll \nu$ (in fact in this case we refer to μ and ν as equivalent measure). So the notions μ a.e. and ν a.e. are the same. By Radon-Nikodym Theorem there exist $f \in \mathcal{L}_{+}^{1}(\mu)$ and $g \in \mathcal{L}_{+}^{1}(\nu)$ such that for all $A \in \mathcal{A}$,

$$
\nu(A)=\int_{A} f d \mu \text { and } \mu(A)=\int_{A} g d \nu .
$$

Furthermore, the functions f and g are unique μ and ν a.e. By Exercise 1 of the last set of exercises exercisesRadonNikodym.pdf, we have for any $A \in \mathcal{A}$,

$$
\nu(A)=\int_{A} 1 d \nu=\int_{A} f d \mu=\int_{A} f g d \nu .
$$

By Corollary 10.14(i) this implies that $1=f g \nu$ and hence μ a.e. From this and Corollary 10.13 we conclude that $0<f<\infty$ and $g=1 / f \mu$ and ν a.e.

