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1. Let µ and ν be two measures on the measure space (E,B) such that µ(A) ≤ ν(A)
for all A ∈ B.

(a) Show that if f is any non-negative measurable function on (E,B), then
∫
E
f dµ ≤∫

E
f dν.

(b) Prove that if ν is a finite measure, then L2(ν) ⊆ L1(µ).

Proof (a) Suppose first that f = 1A is the indicator function of some set A ∈ B.
Then ∫

E

f dµ = µ(A) ≤ ν(A) =

∫
E

f dν.

Suppose now that f =
n∑
k=1

αk1Ak is a non-negative measurable step function. Then,

∫
E

f dµ =
n∑
k=1

αkµ(Ak) ≤
n∑
k=1

αkν(Ak) =

∫
E

f dν.

Finally, let f be a non-negative measurable function, then there exists a sequence
of non-negative measurable step functions fn such that fn ↑ f. By Beppo-Levi,∫

E

f dµ = lim
n→∞

∫
E

fn dµ ≤ lim
n→∞

∫
E

fn dν =

∫
E

f dν.

Proof (b) From part (a) we see that if f ∈ L1(ν), then f ∈ L1(µ), i.e. L1(ν) ⊆
L1(µ). If ν is a finite measure, then by Exercise 12.1 (ii) and the above, we have
L2(ν) ⊆ L1(ν) ⊆ L1(µ).

2. Consider the measure space ((0, 1],B((0, 1]), λ), where B((0, 1]) and λ are the restric-
tions of the Borel σ-algebra and Lebesgue measure to the interval (0, 1]. Determine
the value of

lim
n→∞

∫
(0,1]

e1/x(1 + n2x)−1 sin(ne−1/x dλ(x).

Proof: Let un(x) = e1/x(1 + n2x)−1 sin(ne−1/x, then limn→∞ un(x) = 0 for all
x ∈ (0, 1]. Since | sin y| ≤ y for all y ≥ 0, we have

|un(x)| ≤ e1/x(1 + n2x)−1ne−1/x =
n

1 + n2x
=

1√
x
· n
√
x

1 + n2x
≤ 1√

x
.
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Since the function
1√
x

is positive, measurable and the improper Riemann integrable

on (0, 1] exists, it follows that it is Lebesgue integrable on (0, 1]. By Lebesgue
Dominated Convergence Theorem, we have

lim
n→∞

∫
(0,1]

e1/x(1 + n2x)−1 sin(ne−1/x dλ(x) = lim
n→∞

∫
un(x) dλ(x)

=

∫
lim
n→∞

un(x) dλ(x) = 0.

3. Let (X,F , µ) be a finite measure space. Assume f ∈ L2(µ) satisfies 0 < ||f ||2 <∞,
and let A = {x ∈ X : f(x) 6= 0}. Show that

µ(A) ≥
(
∫
f dµ)2∫
f 2 dµ

.

Solution: Since f = 0 on Ac, we have
∫
f dµ =

∫
f1A dµ. Since µ is a finite

measure and (1A)2 = 1A , then

||1A||2 = (µ(A))1/2 <∞.

Thus, 1A ∈ L2(µ) and by Hölder’s inequality∫
f dµ ≤ ||f ||2||1A||2 = |f ||2(µ(A))1/2.

Squaring both sides and dividing by

||f ||22 =

∫
f 2 dµ (> 0),

we get

µ(A) ≥
(
∫
f dµ)2∫
f 2 dµ

.

4. Let E = {(x, y) : y < x < 1, , 0 < y < 1}. We consider on E the restriction of the
product Borel σ-algebra, and the restriction of the product Lebesgue measure λ×λ.
Let f : E → R be given by f(x, y) = x−3/2 cos(πy

2x
).

(a) Show that f is λ× λ integrable on E.

(b) Define F : (0, 1) → R by F (y) =
∫
(y,1)

x−3/2 cos(πy
2x

) dλ(x). Determine the

value of ∫
F (y) dλ(y).
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Solution (a) : Notice that f is continuous, and hence measurable. Furthermore,
|f(x, y)| ≤ x−3/2. The function g(x, y) = x−3/2 is non-negative and measurable on
E, hence by Tonelli’s Theorem,∫

E

|f(x, y)| d(λ× λ)(x, y) ≤
∫
E

g(x, y) d(λ× λ)(x, y)

=

∫ 1

0

∫ x

0

x−3/2 dy dx

=

∫ 1

0

x−1/2 dx = 2.

Notice that the integrands are Riemann integrable, hence the Riemann integral
equals the Lebesgue integral. This shows that f is λ× λ integrable on E.

Solution (b) : By Fubini’s Theorem∫ ∫
f(x, y) dλ(x) dλ(y) =

∫ ∫
f(x, y) dλ(y) dλ(x).

Notice that for each fixed 0 < x < 1, the function f(x, y) is Riemann-integrable in
y on the interval (0, x) and∫ x

0

x−3/2 cos(
πy

2x
) dy =

2

π
x−1/2,

and the function 2
π
x−1/2 is Riemann-integrable in x on the interval (0, 1), and∫ 1

0

2

π
x−1/2 dx =

4

π
.

Thus,∫
F (y) dλ(y) =

∫ ∫
f(x, y) dλ(x) dλ(y) =

∫ 1

0

∫ x

0

x−3/2 cos(
πy

2x
) dy dx =

4

π
.

5. Let (X,A, µ) be a σ-finite measure space, and (fj) a uniformly integrable sequence
of measurable functions. Define Fk = sup1≤j≤k |fj| for k ≥ 1.

(a) Show that for any w ∈M+(A),∫
{Fk>w}

Fk dµ ≤
k∑
j=1

∫
{|fj |>w}

|fj| dµ.

(b) Show that for every ε > 0, there exists a wε ∈ L1
+(µ) such that for all k ≥ 1∫

X

Fk dµ ≤
∫
X

wε dµ+ kε.
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(c) Show that

lim
k→∞

1

k

∫
X

Fk dµ = 0.

Proof (a) Let w ∈M+(A), then∫
{Fk>w}

Fk dµ ≤
k∑
j=1

∫
{Fk>w}∩{|fj |=Fk}

Fk dµ

≤
k∑
j=1

∫
{|fj |>w}

|fj.| dµ.

Proof (b) Let ε > 0. By uniform integrability of the sequence (fj) there exists

wε ∈ L+(µ) such that ∫
{|fj |>wε}

|fj| dµ < ε

for all j ≥ 1. By part (a)∫
{Fk>wε}

Fk dµ ≤
k∑
j=1

∫
{|fj |>wε}

|fj| dµ ≤ kε.

Now, ∫
X

Fk dµ =

∫
{Fk>wε}

Fk dµ+

∫
{Fk≤wε}

Fk dµ

≤ kε+

∫
X

wε dµ.

Proof (c) For any ε > 0, by part (b),

1

k

∫
X

Fk dµ ≤
1

k

∫
X

wε dµ+ ε.

Thus,

lim sup
k→∞

1

k

∫
X

Fk dµ ≤ ε,

for any ε. Since Fk ≥ 0, we see that

lim sup
k→∞

1

k

∫
X

Fk dµ = lim
k→∞

1

k

∫
X

Fk dµ = 0.

6. Suppose µ and ν are finite measures on the measurable space (X,A) which have the
same null sets. Show that there exists a measurable function f such that 0 < f <∞
µ a.e. and ν a.e. and for all A ∈ A one has

ν(A) =

∫
A

f dµ and µ(A) =

∫
A

1

f
dν.
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Proof The fact that µ and ν have the same null sets implies that ν � µ and µ� ν
(in fact in this case we refer to µ and ν as equivalent measure). So the notions µ
a.e. and ν a.e. are the same. By Radon-Nikodym Theorem there exist f ∈ L1

+(µ)
and g ∈ L1

+(ν) such that for all A ∈ A,

ν(A) =

∫
A

f dµ and µ(A) =

∫
A

g dν.

Furthermore, the functions f and g are unique µ and ν a.e. By Exercise 1 of the
last set of exercises exercisesRadonNikodym.pdf, we have for any A ∈ A,

ν(A) =

∫
A

1 dν =

∫
A

f dµ =

∫
A

fg dν.

By Corollary 10.14(i) this implies that 1 = fg ν and hence µ a.e. From this and
Corollary 10.13 we conclude that 0 < f <∞ and g = 1/f µ and ν a.e.
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