Measure and Integration: Solution Quiz 2015-16

1. Consider the measure space $([0,1), \mathcal{B}([0,1)), \lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ algebra restricted to $[0,1)$ and λ is the restriction of Lebesgue measure on $[0,1)$. Define the transformation $T:[0,1) \rightarrow[0,1)$ given by

$$
T(x)= \begin{cases}3 x & 0 \leq x<1 / 3 \\ \frac{3}{2} x-\frac{1}{2}, & 1 / 3 \leq x<1\end{cases}
$$

(a) Show that T is $\mathcal{B}([0,1)) / \mathcal{B}([0,1))$ measurable, and determine the image measure $T(\lambda)=\lambda \circ T^{-1}$. (1 pt .)
(b) Let $\mathcal{C}=\left\{A \in \mathcal{B}([0,1)): \lambda\left(T^{-1} A \Delta A\right)=0\right\}$. Show that \mathcal{C} is a σ-algebra. (Note that $T^{-1} A \Delta A=\left(T^{-1} A \backslash A\right) \cup\left(A \backslash T^{-1} A\right)$). (1 pt.)
(c) Suppose $A \in \mathcal{B}([0,1))$ satisfies the property that $T^{-1}(A)=A$ and $0<\lambda(A)<$ 1. Define μ_{1}, μ_{2} on $\mathcal{B}([0,1))$ by

$$
\mu_{1}(B)=\frac{\lambda(A \cap B)}{\lambda(A)}, \text { and } \mu_{2}(B)=\frac{\lambda\left(A^{c} \cap B\right)}{\lambda\left(A^{c}\right)} .
$$

Show that μ_{1}, μ_{2} are measures on $\mathcal{B}([0,1))$ satisfying
(i) $T\left(\mu_{i}\right)=\mu_{i}, i=1,2$,
(ii) $\lambda=\alpha \mu_{1}+(1-\alpha) \mu_{2}$ for an appropriate $0<\alpha<1$.
(1 pt.)
Solution(a): To show T is $\mathcal{B}([0,1)) / \mathcal{B}([0,1))$ measurable, it is enough to consider inverse images of intervals of the form $[a, b) \subset[0,1)$. Now,

$$
T^{-1}([a, b))=\left[\frac{a}{3}, \frac{b}{3}\right) \cup\left[\frac{2 a+1}{3}, \frac{2 b+1}{3}\right) \in \mathcal{B}([0,1)) .
$$

Thus, T is measurable.
We claim that $T(\lambda)=\lambda$. To prove this, we use Theorem 5.7. Notice that $\mathcal{B}([0,1))$ is generated by the collection $\mathcal{G}=\{[a, b): 0 \leq a \leq b<1\}$ which is closed under finite intersections. Now,

$$
\begin{aligned}
T(\lambda)([a, b)) & =\lambda\left(T^{-1}([a, b))\right) \\
& =\lambda\left(\left[\frac{a}{3}, \frac{b}{3}\right)\right)+\lambda\left(\left[\frac{2 a+1}{3}, \frac{2 b+1}{3}\right)\right) \\
& =b-a=\lambda([a, b)) .
\end{aligned}
$$

Since the constant sequence $([0,1))$ is exhausting, belongs to \mathcal{G} and $\lambda([0,1))=$ $T(\lambda([0,1))=1<\infty$, we have by Theorem 5.7 that $T(\lambda)=\lambda$.

Solution(b): We check the three conditions for a collection of sets to be a σ-algebra. Firstly, the empty set $\emptyset \in \mathcal{B}([0,1))$ and $T^{-1}(\emptyset)=\emptyset$, hence $\lambda\left(T^{-1} \emptyset \Delta \emptyset\right)=\lambda(\emptyset)=0$, so $\emptyset \in \mathcal{C}$. Secondly, Let $A \in \mathcal{C}$, then $\lambda\left(T^{-1} A \Delta A\right)=0$. Since

$$
\lambda\left(T^{-1} A^{c} \Delta A^{c}\right)=\lambda\left(T^{-1} A \Delta A\right)=0
$$

and $A^{c} \in \mathcal{B}([0,1))$, we have $A^{c} \in \mathcal{C}$. Thirdly, let $\left(A_{n}\right)$ be a sequence in \mathcal{C}, then $A_{n} \in \mathcal{B}([0,1))$ and $\lambda\left(T^{-1} A_{n} \Delta A_{n}\right)=0$ for each n. Since $\mathcal{B}([0,1))$ is a σ-algebra, we have $\bigcup_{n} A_{n} \in \mathcal{B}([0,1))$, and

$$
T^{-1}\left(\bigcup_{n} A_{n}\right)=\bigcup_{n} T^{-1} A_{n}=\bigcup_{n} A_{n} .
$$

An easy calculation shows that

$$
T^{-1}\left(\bigcup_{n} A_{n}\right) \Delta \bigcup_{m} A_{m} \subseteq \bigcup_{n}\left(T^{-1} A_{n} \Delta A_{n}\right) .
$$

By σ-subadditivity of λ, we have

$$
\lambda\left(T^{-1}\left(\bigcup_{m} A_{m}\right) \Delta \bigcup_{n} A_{n}\right) \leq \sum_{n} \lambda\left(T^{-1} A_{n} \Delta A_{n}\right)=0
$$

Thus, $\bigcup_{n} A_{n} \in \mathcal{C}$. This shows that \mathcal{C} is a σ-algebra.
Solution (c): First note that $0<\lambda\left(A^{c}\right)<1$ and $T^{-1}\left(A^{c}\right)=A^{c}$. The proofs that μ_{1} and μ_{2} are measures are similar, so we only prove that μ_{1} is a measure. First note that

$$
\mu_{1}(\emptyset)=\frac{\lambda(A \cap \emptyset)}{\lambda(A)}=\frac{\lambda(\emptyset)}{\lambda(A)}=0 .
$$

Suppose $\left(A_{i}\right)$ is a pairwise disjoint sequence in $\mathcal{B}([0,1))$. Then

$$
\mu_{1}\left(\bigcup_{i} A_{i}\right)=\frac{\lambda\left(A \cap \bigcup_{i} A_{i}\right)}{\lambda(A)}=\sum_{i} \frac{\lambda\left(A \cap A_{i}\right)}{\lambda(A)}=\sum_{i} \mu_{1}\left(A_{i}\right) .
$$

Hence, μ_{1} is a measure. A similar proof shows that μ_{2} is a measure. We now show (i). Firstly, since $T^{-1}(A)=A$ and $T^{-1}\left(A^{c}\right)=A^{c}$ we have by (a),

$$
\lambda\left(A \cap T^{-1}(B)\right)=\lambda\left(T^{-1}(A) \cap T^{-1}(B)\right)=\lambda\left(T^{-1}(A \cap B)=\lambda(A \cap B),\right.
$$

and

$$
\lambda\left(A^{c} \cap T^{-1}(B)\right)=\lambda\left(T^{-1}\left(A^{c}\right) \cap T^{-1}(B)\right)=\lambda\left(T^{-1}\left(A^{c} \cap B\right)=\lambda\left(A^{c} \cap B\right),\right.
$$

for any $B \in \mathcal{B}([0,1))$. Thus,

$$
T\left(\mu_{1}\right)(B)=\mu_{1}\left(T^{-1}(B)\right)=\frac{\lambda\left(A \cap T^{-1}(B)\right)}{\lambda(A)}=\frac{\lambda(A \cap B)}{\lambda(A)}=\mu_{1}(B),
$$

and

$$
T\left(\mu_{2}\right)(B)=\mu_{2}\left(T^{-1}(B)\right)=\frac{\lambda\left(A^{c} \cap T^{-1}(B)\right)}{\lambda\left(A^{c}\right)}=\frac{\lambda\left(A^{c} \cap B\right)}{\lambda\left(A^{c}\right)}=\mu_{2}(B) .
$$

To prove (ii), we notice that for any $B \in \mathcal{B}([0,1))$,

$$
\lambda(B)=\lambda(A \cap B)+\lambda\left(A^{c} \cap B\right)=\lambda(A) \mu_{1}(B)+\lambda\left(A^{c}\right) \mu_{2}(B)
$$

Since $\lambda\left(A^{c}\right)=1-\lambda(A)$, the result follows with $\alpha=\lambda(A)$.
2. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra over \mathbb{R}, and λ is Lebesgue measure. Define f on \mathbb{R} by $f(x)=2 x \mathbf{1}_{[0,1)}(x)$.
(a) Show that f is $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. (1 pt.)
(b) Find a sequence $\left(f_{n}\right)$ in \mathcal{E}^{+}such that $f_{n} \nearrow f$. (1 pt.)
(c) Determine the value of $\int f d \mu$ using only the material of Chapter 9. (1 pt.)
(d) Let $\mathcal{C}=\sigma(\{\{x\}: x \in[0,1)\})$ and $\mathcal{A}=\left\{A \subseteq[0,2): A\right.$ is countable or A^{c} is countable $\}$. Show that f is $\mathcal{C} / \mathcal{A}$ measurable and $\mathcal{C}=\mathcal{A} \cap[0,1)$. (Here we are seeing f as a function defined on $[0,1)$) (1 pt.)

Solution(a): Note that the function $g(x)=2 x$ is continuous and hence $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. Also $[0,1) \in \mathcal{B}(\mathbb{R})$, hence $\mathbf{1}_{[0,1)}$ is $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. Finally f is the product of two measurable functions, and therefore f is $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable.

Solution(b): Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\sum_{k=0}^{2^{n}-1} \frac{2 k}{2^{n}} \cdot 1_{\left[k / 2^{n},(k+1) / 2^{n}\right)}, n \geq 1
$$

Since $\left[k / 2^{n},(k+1) / 2^{n}\right) \in \mathcal{B}(\mathbb{R})$, then $f_{n} \in \mathcal{E}^{+}$. We now show that f_{n} increases to f. For $x \notin[0,1)$, i.e have $f_{n}(x)=f_{n+1}(x)=0$. Suppose $x \in[0,1)$, then there exists a $0 \leq k \leq 2^{n}-1$ such that $x \in\left[k / 2^{n},(k+1) / 2^{n}\right)$. Since

$$
\left[k / 2^{n},(k+1) / 2^{n}\right)=\left[2 k / 2^{n+1},(2 k+1) / 2^{n+1}\right) \cup\left[(2 k+1) / 2^{n+1},(2 k+2) / 2^{n+1}\right)
$$

we see that $f_{n}(x)=\frac{2 k}{2^{n}}$ while $f_{n+1}(x) \in\left\{\frac{4 k}{2^{n+1}}, \frac{2(2 k+1)}{2^{n+1}}\right\}$ so that $f_{n}(x) \leq f_{n+1}(x)$.
For $x \notin[0,1)$, we have $f(x)=f_{n}(x)=0$ for all n. For $x \in[0,1)$, there exists for each n, an integer $k_{n} \in\left\{0,1, \cdots, 2^{n}-1\right\}$ such that $x \in\left[k_{n} / 2^{n},\left(k_{n}+1\right) / 2^{n}\right)$. Thus,

$$
\left|f(x)-f_{n}(x)\right|=\left|2 x-\frac{2 k_{n}}{2^{n}}\right|=2\left|x-\frac{k_{n}}{2^{n}}\right|<\frac{1}{2^{n-1}} .
$$

Since f_{n} is an increasing sequence, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Solution(c): Since f is the supremum of measurable functions, by Corollary $8.9 f$ is measurable. To calculate the integral we apply Beppo-Levi,

$$
\begin{aligned}
\int f d \lambda & =\lim _{n \rightarrow \infty} \int f_{n} d \lambda \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{2^{n}-1} \frac{2 k}{2^{n}} \lambda\left(\left[k / 2^{n},(k+1) / 2^{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{2^{n}-1} \frac{2 k}{2^{n}} \frac{1}{2^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{4^{n}} \sum_{k=0}^{2^{n}-1} k \\
& =\lim _{n \rightarrow \infty} \frac{2}{2} \frac{\left(2^{n}-1\right) 2^{n}}{4^{n}}=1
\end{aligned}
$$

Solution(d): First note that \mathcal{A} is a σ-algebra. Let $A \in \mathcal{A}$, and set $B=\{a / 2$: $a \in A\}$. Then $f^{-1}(A)=B$. If A is countable, then B is countable and can be written as a countable union of the form $B=\cup_{x \in B}\{x\}$. Since \mathcal{C} is a σ-algebra and $\{x\} \in \mathcal{C}$ we have $A \in \mathcal{C}$, and $f^{-1}(A)=B \in \mathcal{C}$. Similarly if A^{c} is countable, then $B^{c}=\left\{a / 2: a \in A^{c}\right\}$ is countable and can be written as a countable union of the form $B^{c}=\cup_{x \in B^{c}}\{x\}$, hence $A^{c} \in \mathcal{C}$, and $B^{c} \in \mathcal{C}$. Since $B^{c}=f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}$, we see that $B=f^{-1}(A) \in \mathcal{C}$. Thus, f is $\mathcal{C} / \mathcal{A}$ measurable. Now a similar argument as above shows that if $A \in \mathcal{A} \cap[0,1)$) is countable then $A \in \mathcal{C}$, and if A^{c} is countable then $A^{c} \in \mathcal{C}$. Thus $\mathcal{A} \cap[0,1) \subseteq \mathcal{C}$. Finally, notice that the generators of \mathcal{C} are elements of $\mathcal{A} \cap[0,1)$, hence $\mathcal{C} \subseteq \mathcal{A} \cap[0,1)$ implying equality.
3. Consider the measure space $([0,1] \mathcal{B}([0,1]), \lambda)$, where λ is the restriction of Lebesgue measure to $[0,1]$, and let $A \in \mathcal{B}([0,1])$ be such that $\lambda(A)=1 / 2$. Consider the real function f defined on $[0,1]$ by $f(x)=\lambda(A \cap[0, x])$.
(a) Show that for any $x, y \in[0,1]$, we have

$$
|f(x)-f(y)| \leq|x-y|
$$

Conclude that f is $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. (1 pt.)
(b) Show that for any $\alpha \in(0,1 / 2)$, there exists $A_{\alpha} \subset A$ with $A_{\alpha} \in \mathcal{B}([0,1))$ and $\lambda\left(A_{\alpha}\right)=\alpha$. (1 pt.)

Solution(a): Let $x, y \in[0,1]$ and assume with no loss of generality that $y<x$. Then

$$
|f(x)-f(y)|=f(x)-f(y)=\lambda(A \cap[y, x]) \leq \lambda([y, x])=x-y=|x-y|
$$

The above shows that f is a continuous function on $[0,1]$, and hence Borel measurable.

Solution(b): Part (a) shows that f is a continuous function on $[0,1]$ with $f(0)=$ 0 , and $f(1)=\lambda(A)=1 / 2$. Hence by the Intermediate Value Theorem, for any $\alpha \in(0,1)$ there exists $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=\alpha$. Set $A_{\alpha}=A \cap\left[0, x_{0}\right]$, then $A_{\alpha} \subset A$ and $A_{\alpha} \in \mathcal{B}\left([0,1]\right.$ satisfies $\lambda\left(A_{\alpha}\right)=f\left(x_{0}\right)=\alpha$.

