Uitwerkingen Extra Opgaven Inleiding Financiele Wiskunde, 2011-12

1. Consider the binomial model with $u=2^{1}, d=2^{-1}$, and $r=1 / 4$, and consider a perpetual American put option with $S_{0}=10$ and $K=12$. Suppose that Alice and Bob each buy such an option
(a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0 ?
(b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0 ?
(c) What is the probability that the price reaches 20 euros for the first time at time $n=5$?

Solution (a): Note that the price process has the form $S_{n}=S_{0} 2^{M_{n}}=102^{M_{n}}$, where M_{n} is the symmetric random walk. The strategy of Alice corresponds to the exercise policy τ_{-1}, the first time the random walk reaches level -1 . Using formula (5.2.13), we find

$$
\widetilde{E}\left[\left(\frac{1}{1+r}\right)^{\tau-1}\right]=\widetilde{E}\left[\left(\frac{4}{5}\right)^{\tau_{-1}}\right]=\frac{1}{2} .
$$

Thus, the price at time 0 is

$$
V\left(\tau_{-1}\right)=\widetilde{E}\left[\left(\frac{1}{1+r}\right)^{\tau_{-1}}\left(K-S_{\tau_{-1}}\right)\right]=(12-5) / 2=7 / 2=3.5 .
$$

Solution (b): The strategy of Bob corresponds to the exercise policy τ_{-2}, the first time the random walk reaches level -2 . Note that

$$
\widetilde{E}\left[\left(\frac{1}{1+r}\right)^{\tau-2}\right]=\widetilde{E}\left[\left(\frac{4}{5}\right)^{\tau-2}\right]=\frac{1}{4} .
$$

Thus, the price at time 0 is

$$
V\left(\tau_{-2}\right)=\widetilde{E}\left[\left(\frac{1}{1+r}\right)^{\tau_{-2}}\left(K-S_{\tau_{-2}}\right)\right]=(12-2.5) / 4=2.375 .
$$

Solution (c): Using formula (5.2.22) (with $j=3$), the required probability is

$$
P\left(\tau_{1}=5\right)=1 / 16
$$

2. Let M_{0}, M_{1}, \cdots be the symmetric random walk. Define for $a \in Z, M_{n}^{a}=a+M_{n}$. The process $M_{0}^{a}, M_{1}^{a}, \cdots$ is called the symmetric random walk starting in a. Let $b \in Z$ be such that $n+b-a$ is even.
(a) Let $N_{n}(a, b)$ be the number of paths of length n starting in a and ending in b. Show that $N_{n}(a, b)=\binom{n}{\frac{1}{2}(n+b-a)}$. Conclude that

$$
P\left(M_{n}^{a}=b\right)=\binom{n}{\frac{1}{2}(n+b-a)} \frac{1}{2^{n}} .
$$

(b) Let $N_{n}^{0}(a, b)$ be the number of paths of length n starting in a and ending in b that cross the x-axis at least once. Use the reflection principle to prove that if $a, b>0$, then $N_{n}^{0}(a, b)=N_{n}(-a, b)$.
(c) Let $b>0$, using part (b) show that the number of paths of length n starting in 0 which does not cross the x-axis (except at the starting point) equals $\frac{b}{n} N_{n}(0, b)$.
(d) Use part (c) to prove that if $b>0$, then

$$
P\left(M_{n}=b, \min _{1 \leq k \leq n-1} M_{k}>0\right)=\frac{b}{n} P\left(M_{n}=b\right) .
$$

Solution (a): Let u be the number of steps to the right, and d the number of steps to the left. Then $u+d=n$, and $u-d=b-a$. Solving, we get $u=\frac{1}{2}(n+b-a)$, and $d=\frac{1}{2}(n-b+a)$. Thus, $N_{n}(a, b)=\binom{n}{\frac{1}{2}(n+b-a)}$. Finally,

$$
P\left(M_{n}^{a}=b\right)=N_{n}(a, b) \frac{1}{2^{n}}=\binom{n}{\frac{1}{2}(n+b-a)} \frac{1}{2^{n}} .
$$

Solution (b): Consider a path of length n starting in $-a$ and ending in b. Such a path must cross the x-axis at some time $k \in\{1, \cdots, n-1\}$. Now, reflect that segment of the path between time 0 and time k to obtain a new path of length n starting in a and ending in b that crosses the x-axis at least once in the time interval $[1, n-1]$. This gives us a one-to-one correspondence between paths of length n starting in $-a$ and ending in b, and paths of length n starting in a and ending in b that cross the x-axis at least once in the time interval $[1, n-1]$. Thus, $N_{n}^{0}(a, b)=N_{n}(-a, b)$.

Solution (c): Since $b>0$, the first step of any path of length n starting in 0 which does not cross the x-axis (except at time 0) must be to the right. After this step, we must make an additional $n-1$ steps starting in 1 and ending in b, such that during these steps no visit to the x-axis occurs. This can be done in $N_{n-1}(1, b)-N_{n-1}^{0}(1, b)$ ways. Using part(b), we have
$N_{n-1}(1, b)-N_{n-1}^{0}(1, b)=\binom{n-1}{\frac{1}{2}(n-1+b-1)}-\binom{n-1}{\frac{1}{2}(n-1+b+1)}$

$$
\begin{aligned}
& =\frac{(n-1)!}{\left(\frac{1}{2}(n+b-2)\right)!\left(\frac{1}{2}(n-b)\right)!}-\frac{(n-1)!}{\left(\frac{1}{2}(n-b-2)\right)!\left(\frac{1}{2}(n+b)\right)!} \\
& =\frac{(n)!}{\left(\frac{1}{2}(n+b)\right)!\left(\frac{1}{2}(n-b)\right)!} \cdot \frac{b}{n} \\
& =\frac{b}{n}\binom{n}{\frac{1}{2}(n+b)} \\
& =\frac{b}{n} N_{n}(0, b) .
\end{aligned}
$$

Solution (d): Note that in the event $\left\{M_{n}=b, \min _{1 \leq k \leq n-1} M_{k}>0\right\}$ we are looking at paths of length n starting in 0 ending in b, that never crosses the x-axis in the time interval $[1, n-1]$. From part (c), the number of such paths equals $\frac{b}{n} N_{n}(0, b)$. Since each path has a probability $\frac{1}{2^{n}}$ of occurring, we have

$$
P\left(M_{n}=b, \min _{1 \leq k \leq n-1} M_{k}>0\right)=\frac{b}{n} N_{n}(0, b) \frac{1}{2^{n}}=\frac{b}{n} P\left(M_{n}=b\right) .
$$

