Uitwerkingen OefenDeeltentamen 1 Inleiding Financiele Wiskunde, 2010

1. Consider a 2-period binomial model with $S_{0}=10, u=1.25, d=0.75$, and $r=0.2$. Suppose the real probability measure P satisfies $P(H)=p=0.6=1-P(T)$.
(a) Consider an option with payoff $V_{2}=\left(\max \left(S_{1}, S_{2}\right)-11\right)^{+}$. Determine the price V_{n} at time $n=0,1$.
(b) Suppose $\omega_{1} \omega_{2}=H H$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ so that the corresponding wealth process satisfies $X_{2}(H H)=V_{2}(H H)$. Describe the corresponding strategy.
(c) Determine explicitly the state price density process

$$
\frac{Z_{0}}{(1+r)^{0}}, \frac{Z_{1}}{(1+r)}, \frac{Z_{2}}{(1+r)^{2}},
$$

where

$$
Z_{2}\left(\omega_{1} \omega_{2}\right)=Z\left(\omega_{1} \omega_{2}\right)=\frac{\widetilde{P}\left(\omega_{1} \omega_{2}\right)}{P\left(\omega_{1} \omega_{2}\right)}
$$

with \widetilde{P} the risk neutral probability measure, and $Z_{i}=E_{i}(Z), i=0,1$.
(d) Consider the utility function $U(x)=\ln x^{2}$. Find a random variable X (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=10$.

Solution(a) From the given parameters, we have $\widetilde{p}=0.9=1-\widetilde{q}$. From the price tree and the definition of V_{2}, we have $V_{2}(H H)=4.625, V_{2}(H T)=1.5, V_{2}(T H)=$ $0=V_{2}(T T)$. Therefore

$$
\begin{gathered}
V_{1}(H)=\frac{1}{1.2}[(0.9)(4.625)+(0.1)(1.5)]=3.59375 \\
V_{1}(T)=\frac{1}{1.2}[(0.9)(0)+(0.1)(0)]=0 \\
V_{0}=\frac{1}{1.2}[(0.9)(3.59375)+(0.1)(0)]=2.6953125
\end{gathered}
$$

Solution(b) If $\omega_{1} \omega_{2}=H H$, then

$$
\Delta_{0}=\frac{V_{1}(H)-V_{1}(T)}{S_{1}(H)-S_{1}(T)}=\frac{3.59375-0}{12.5-7.5}=0.71875
$$

and

$$
\Delta_{1}(H)=\frac{V_{2}(H H)-V_{2}(H T)}{S_{2}(H H)-S_{2}(H T)}=\frac{4.625-1.5}{15.625-9.375}=0.5 .
$$

Time 0: sell the option for $V_{0}=2.6953125$ Euros and buy 0.71875 of the underlying stock. In order to finance this you need to borrow 4.4921875 from the bank. Therefore.

$$
X_{0}=2.6953125=(0.71875)(10)+(-4.4921875) .
$$

Time 1: your wealth is now

$$
X_{1}=(0.71875)(12.5)-(1.2)(4.4921875)=3.59375
$$

Adjust your portfolio:

$$
X_{1}(H)=3.59375=(0.5)(12.5)+(3.59375-(0.5)(12.5))=(0.5)(12.5)-2.65625 .
$$

Time 2: your wealth is

$$
X_{2}(H H)=(0.5)(15.625)-(1.2)(2.65625)=4.625=V_{2}(H H) .
$$

Solution(c) $\frac{Z_{0}}{(1+r)^{0}}=1$, and

$$
\begin{gathered}
\frac{Z_{1}(H)}{(1+r)^{1}}=\frac{\widetilde{P}(H)}{P(H)(1.2)}=\frac{5}{4} . \\
\frac{Z_{1}(T)}{(1+r)^{1}}=\frac{\widetilde{P}(T)}{P(T)(1.2)}=\frac{5}{24} . \\
\frac{Z_{2}(H H)}{(1+r)^{2}}=\frac{\widetilde{P}(H H)}{P(H H)(1.2)^{2}}=\frac{25}{16} . \\
\frac{Z_{2}(H T)}{(1+r)^{2}}=\frac{\widetilde{P}(H T)}{P(H T)(1.2)^{2}}=\frac{25}{96} . \\
\frac{Z_{2}(T H)}{(1+r)^{2}}=\frac{\widetilde{P}(T H)}{P(T H)(1.2)^{2}}=\frac{25}{96} . \\
\frac{Z_{2}(T T)}{(1+r)^{2}}=\frac{\widetilde{P}(T T)}{P(T T)(1.2)^{2}}=\frac{25}{576} .
\end{gathered}
$$

Solution(d) Using the same notation as in the book, we let $x_{1}=X(H H), x_{2}=$ $X(H T), x_{3}=X(T H), x_{4}=X(T H)$, and note that $P(H H)=\frac{9}{25}, P(H T)=$ $\frac{6}{25}, P(T H)=\frac{6}{25}, P(T T)=\frac{4}{25}$. Our aim is to find a vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ that maximizes

$$
E(U(X))=\frac{9}{25} \ln x_{1}^{2}+\frac{6}{25} \ln x_{2}^{2}+\frac{6}{25} \ln x_{3}^{2}+\frac{4}{25} \ln x_{4}^{2}
$$

subject to the condition $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=10$, which is equivalent to

$$
\frac{9}{25} \frac{25}{16} x_{1}+\frac{6}{25} \frac{25}{96} x_{2}+\frac{6}{25} \frac{25}{96} x_{3}+\frac{4}{25} \frac{25}{576} x_{4}=10 .
$$

To solve we consider the Lagrangian
$L=\frac{9}{25} \ln x_{1}^{2}+\frac{6}{25} \ln x_{2}^{2}+\frac{6}{25} \ln x_{3}^{2}+\frac{4}{25} \ln x_{4}^{2}-\lambda\left(\frac{9}{25} \frac{25}{16} x_{1}+\frac{6}{25} \frac{25}{96} x_{2}+\frac{6}{25} \frac{25}{96} x_{3}+\frac{4}{25} \frac{25}{576} x_{4}-10\right)$.
Taking the partial derivatives of L w.r.t. $x_{1}, x_{2}, x_{3}, x_{4}$, and setting these to zero (or using directly equations 3.3 .23 from the book), we can solve for $x_{1}, x_{2}, x_{3}, x_{4}$ in terms of λ. This leads to

$$
x_{1}=\frac{32}{25 \lambda}, x_{2}=\frac{192}{25 \lambda}, x_{3}=\frac{192}{25 \lambda}, x_{4}=\frac{1152}{25 \lambda} .
$$

Plugging in these values in the constraint equation, we get

$$
\frac{18}{25 \lambda}+\frac{12}{25 \lambda}+\frac{12}{25 \lambda}+\frac{8}{25 \lambda}=10 .
$$

Solving the above equation, we get $\lambda=\frac{1}{5}$, and hence

$$
x_{1}=\frac{32}{5}, x_{2}=\frac{192}{5}, x_{3}=\frac{192}{5}, x_{4}=\frac{1152}{5} .
$$

2. Consider the N-period binomial model. Consider the random variables X_{1}, \ldots, X_{N} on (Ω, P) defined by

$$
X_{i}\left(\omega_{1} \ldots \omega_{N}\right)= \begin{cases}2, & \text { if } \omega_{i}=H \\ 0, & \text { if } \omega_{i}=T\end{cases}
$$

(a) Assume $P(H)=1 / 2=P(T)$. Let $Z_{0}=1$, and $Z_{n}=X_{1} \ldots X_{n}, n=$ $1,2, \ldots, N$. Prove that the process $Z_{0}, Z_{1}, \ldots, Z_{N}$ is a martingale w.r.t. P.
(b) Suppose $P(H)=1 / 4=1-P(T)$. Show that the process $Z_{0}, Z_{1}, \ldots, Z_{N}$ in part (a) is now a supermartingale w.r.t. P, while the process $Z_{0}^{2}, Z_{1}^{2}, \ldots, Z_{N}^{2}$ is a martingale w.r.t. P.

Solution(a) Notice that $Z_{n+1}=Z_{n} X_{n+1}$ and $E\left(X_{n+1}\right)=1$. Since Z_{n} is known at time n and X_{n+1} is independent of the first n tosses, we have

$$
E_{n}\left(Z_{n+1}\right)=E_{n}\left(Z_{n} X_{n+1}\right)=Z_{n} E_{n}\left(X_{n+1}\right)=Z_{n} E\left(X_{n+1}\right)=Z_{n}
$$

Therefore, $Z_{0}, Z_{1}, \ldots, Z_{N}$ is a martingale w.r.t. P.
Solution(b) If $P(H)=1 / 4=1-P(T)$, then $E\left(X_{n}\right)=1 / 2$ and $E\left(X_{n}^{2}\right)=1$ for all n. Thus,

$$
E_{n}\left(Z_{n+1}\right)=E_{n}\left(Z_{n} X_{n+1}\right)=Z_{n} E_{n}\left(X_{n+1}\right)=Z_{n} E\left(X_{n+1}\right)=\frac{1}{2} Z_{n}<Z_{n}
$$

and

$$
E_{n}\left(Z_{n+1}^{2}\right)=E_{n}\left(Z_{n}^{2} X_{n+1}^{2}\right)=Z_{n}^{2} E_{n}\left(X_{n+1}^{2}\right)=Z_{n}^{2} E\left(X_{n+1}^{2}\right)=Z_{n}^{2} .
$$

Therefore, $Z_{0}, Z_{1}, \ldots, Z_{N}$ is a supermartingale, while $Z_{0}^{2}, Z_{1}^{2}, \ldots, Z_{N}^{2}$ is a martingale w.r.t. P.
3. Consider the N-period binomial model.
(a) Assume $X_{0}, X_{1}, \ldots, X_{N}$ is a Markov process w.r.t. the risk neutral measure \widetilde{P}. Consider an option with payoff $V_{N}=X_{N}^{2}$. Show that for each $n=0,1, \ldots, N$, there exists a function g_{n} such that the price at time n is given by $V_{n}=g_{n}\left(X_{n}\right)$.
(b) Suppose Y is a random variable on Ω. Define a process

$$
Y_{0}, Y_{1}, \ldots, Y_{N}
$$

by $Y_{n}=\widetilde{E}_{n}(Y)$. Let

$$
Z_{0}, Z_{1}, \ldots, Z_{N}
$$

be the Radon-Nikodym derivative process of \widetilde{P} w.r.t. P, so $Z_{n}=E_{n}(Z)$, with Z the Radon-Nikodym derivative of \widetilde{P} w.r.t. P. Show that the process

$$
Z_{0} Y_{0}, Z_{1} Y_{1}, \ldots, Y_{N} Z_{N}
$$

is a martingale w.r.t. P. (Hint: use Lemma 3.2.6)
Solution(a) The result is a direct application of Theorem 2.5.8, which can be proved with induction. Let $g_{N}(x)=x^{2}$, then $V_{N}=g_{N}\left(X_{N}\right)$. Assume the result is true for V_{n}, i.e. there exists a function g_{n} such that $V_{n}=g_{n}\left(X_{n}\right)$, we prove it is true for V_{n-1}. From the risk neutral pricing formula,

$$
V_{n-1}=\widetilde{E}_{n-1}\left(\frac{V_{n}}{1+r}\right)=\widetilde{E}_{n-1}\left(\frac{g_{n}\left(X_{n}\right)}{1+r}\right)=\widetilde{E}_{n-1}\left(f_{n}\left(X_{n}\right)\right),
$$

where $f_{n}(x)=\frac{g_{n}\left(X_{n}\right)}{1+r}$. Since the process X_{0}, \ldots, X_{N} is Markov, there exists a function g_{n-1} such that

$$
\widetilde{E}_{n-1}\left(f_{n}\left(X_{n}\right)\right)=g_{n-1}\left(X_{n-1}\right) .
$$

Thus, $V_{n-1}=g_{n-1}\left(X_{n-1}\right)$ as required.
Solution(b) Using Lemma 3.2.6 with $m=N$, we get

$$
Z_{n} Y_{n}=Z_{n} \widetilde{E}_{n}(Y)=E_{n}(Z Y)
$$

By Theorem 3.2.1, the process $E_{0}(Z Y), E_{1}(Z Y), \ldots, E_{N}(Z Y)$ is a martingale w.r.t. P, therefore the process

$$
Z_{0} Y_{0}, Z_{1} Y_{1}, \ldots, Y_{N} Z_{N}
$$

is a martingale w.r.t. P

