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Chapter 1

Introduction and preliminaries

1.1 What is Ergodic Theory?

Ergodic Theory is difficult to characterize, as it stands at the junction of so
many fields. It uses techniques and examples from many fields such as proba-
bility theory, statistical mechanics, number theory, vector fields on manifolds,
group actions of homogeneous spaces and many more.

The word ergodic is an amalgamation of two Greek words: ergon (work)
and odos (path). The word was introduced by Boltzmann (in statistical
mechanics) regarding his hypothesis: for large systems of interacting particles
in equilibrium, the time average along a single trajectory equals the space
average. The hypothesis as it was stated was false, and the investigation for
the conditions under which these two quantities are equal lead to the birth
of ergodic theory as is known nowadays.

A modern description of what ergodic theory is would be: it is the study
of the long term average behavior of systems evolving in time. The collection
of all states of the system form a space X, and the evolution is represented
by either

– a transformation T : X → X, where Tx is the state of the system at
time t = 1, when the system (i.e., at time t = 0) was initially in state x.
(This is analogous to the setup of discrete time stochastic processes).

– if the evolution is continuous or if the configurations have spacial struc-
ture, then we describe the evolution by looking at a group of transfor-
mations G (like Z2, R, R2) acting on X, i.e., every g ∈ G is identified
with a transformation Tg : X → X, and Tgg′ = Tg ◦ Tg′ .
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6 Introduction and preliminaries

The space X usually has a special structure, and we want T to preserve
the basic structure on X. For example
–if X is a measure space, then T must be measurable.
–if X is a topological space, then T must be continuous.
–if X has a differentiable structure, then T is a diffeomorphism.
In this course our space is a probability space (X,B, µ), and our time is
discrete. So the evolution is described by a measurable map T : X → X, so
that T−1A ∈ B for all A ∈ B. For each x ∈ X, the orbit of x is the sequence

x, Tx, T 2x, . . . .

If T is invertible, then one speaks of the two sided orbit

. . . , T−1x, x, Tx, . . . .

We want also that the evolution is in steady state i.e. stationary. In the
language of ergodic theory, we want T to be measure preserving.

1.2 Measure Preserving Transformations

Definition 1.2.1 Let (X,B, µ) be a probability space, and T : X → X mea-
surable. The map T is said to be measure preserving with respect to µ if
µ(T−1A) = µ(A) for all A ∈ B.

This definition implies that for any measurable function f : X → R, the
process

f, f ◦ T, f ◦ T 2, . . .

is stationary. This means that for all Borel sets B1, . . . , Bn, and all integers
r1 < r2 < . . . < rn, one has for any k ≥ 1,

µ ({x : f(T r1x) ∈ B1, . . . f(T rnx) ∈ Bn}) =

µ
({x : f(T r1+kx) ∈ B1, . . . f(T rn+kx) ∈ Bn}

)
.

In case T is invertible, then T is measure preserving if and only if µ(TA) =
µ(A) for all A ∈ B. We can generalize the definition of measure preserving to
the following case. Let T : (X1,B1, µ1) → (X2,B2, µ2) be measurable, then
T is measure preserving if µ1(T

−1A) = µ2(A) for all A ∈ B2. The following
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gives a useful tool for verifying that a transformation is measure preserving.
For this we need the notions of algebra and semi-algebra.
Recall that a collection S of subsets of X is said to be a semi-algebra if
(i) ∅ ∈ S, (ii) A ∩ B ∈ S whenever A,B ∈ S, and (iii) if A ∈ S, then
X\A = ∪n

i=1Ei is a disjoint union of elements of S. For example if X = [0, 1),
and S is the collection of all subintervals, then S is a semi-algebra. Or if
X = {0, 1}Z, then the collection of all cylinder sets {x : xi = ai, . . . , xj = aj}
is a semi-algebra.
An algebra A is a collection of subsets of X satisfying:(i) ∅ ∈ A, (ii) if
A,B ∈ A, then A ∩ B ∈ A, and finally (iii) if A ∈ A, then X \ A ∈ A.
Clearly an algebra is a semi-algebra. Furthermore, given a semi-algebra S
one can form an algebra by taking all finite disjoint unions of elements of S.
We denote this algebra by A(S), and we call it the algebra generated by S.
It is in fact the smallest algebra containing S. Likewise, given a semi-algebra
S (or an algebra A), the σ-algebra generated by S (A) is denoted by B(S)
(B(A)), and is the smallest σ-algebra containing S (or A).
A monotone class C is a collection of subsets of X with the following two
properties

– if E1 ⊆ E2 ⊆ . . . are elements of C, then ∪∞i=1Ei ∈ C,

– if F1 ⊇ F2 ⊇ . . . are elements of C, then ∩∞i=1Fi ∈ C.

The monotone class generated by a collection S of subsets of X is the smallest
monotone class containing S.

Theorem 1.2.1 Let A be an algebra of X, then the σ-algebra B(A) gener-
ated by A equals the monotone class generated by A.

Using the above Theorem, one can get an easier criterion for checking that
a transformation is measure preserving.

Theorem 1.2.2 Let (Xi,Bi, µi) be probability spaces, i = 1, 2, and T : X1 →
X2 a transformation. Suppose S2 is a generating semi-algebra of B2. Then,
T is measurable and measure preserving if and only if for each A ∈ S2, we
have T−1A ∈ B1 and µ1(T

−1A) = µ2(A).

Proof. Let

C = {B ∈ B2 : T−1B ∈ B1, and µ1(T
−1B) = µ2(B)}.
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Then, S2 ⊆ C ⊆ B2, and hence A(S2) ⊂ C. We show that C is a monotone
class. Let E1 ⊆ E2 ⊆ . . . be elements of C, and let E = ∪∞i=1Ei. Then,
T−1E = ∪∞i=1T

−1Ei ∈ B1.

µ1(T
−1E) = µ1(∪∞n=1T

−1En) = lim
n→∞

µ1(T
−1En)

= lim
n→∞

µ2(En)

= µ2(∪∞n=1En)

= µ2(E).

Thus, E ∈ C. A similar proof shows that if F1 ⊇ F2 ⊇ . . . are elements of C,
then ∩∞i=1Fi ∈ C. Hence, C is a monotone class containing the algebra A(S2).
By the monotone class theorem, B2 is the smallest monotone class containing
A(S2), hence B2 ⊆ C. This shows that B2 = C, therefore T is measurable
and measure preserving. ¤
For example if
– X = [0, 1) with the Borel σ-algebra B, and µ a probability measure on B.
Then a transformation T : X → X is measurable and measure preserving if
and only if T−1[a, b) ∈ B and µ (T−1[a, b)) = µ ([a, b)) for any interval [a, b).
– X = {0, 1}N with product σ-algebra and product measure µ. A trans-
formation T : X → X is measurable and measure preserving if and only
if

T−1 ({x : x0 = a0, . . . , xn = an}) ∈ B,

and

µ
(
T−1{x : x0 = a0, . . . , xn = an}

)
= µ ({x : x0 = a0, . . . , xn = an})

for any cylinder set.

Exercise 1.2.1 Recall that if A and B are measurable sets, then

A∆B = (A ∪B) \ (A ∩B) = (A \B) ∪ (B \ A).

Show that for any measurable sets A,B, C one has

µ(A∆B) ≤ µ(A∆C) + µ(C∆B).

Another useful lemma is the following (see also ([KT]).
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Lemma 1.2.1 Let (X,B, µ) be a probability space, and A an algebra gener-
ating B. Then, for any A ∈ B and any ε > 0, there exists C ∈ A such that
µ(A∆C) < ε.

Proof. Let

D = {A ∈ B : for any ε > 0, there exists C ∈ A such that µ(A∆C) < ε}.
Clearly, A ⊆ D ⊆ B. By the Monotone Class Theorem (Theorem (1.2.1)),
we need to show that D is a monotone class. To this end, let A1 ⊆ A2 ⊆ · · ·
be a sequence in D, and let A =

⋃∞
n=1 An, notice that µ(A) = lim

n→∞
µ(An).

Let ε > 0, there exists an N such that µ(A∆AN) = |µ(A) − µ(AN)| < ε/2.
Since AN ∈ D, then there exists C ∈ A such that µ(AN∆C) < ε/2. Then,

µ(A∆C) ≤ µ(A∆AN) + µ(AN∆C) < ε.

Hence, A ∈ D. Similarly, one can show that D is closed under decreasing in-
tersections so that D is a monotone class containg A, hence by the Monotone
class Theorem B ⊆ D. Therefore, B = D, and the theorem is proved.

¤

1.3 Basic Examples

(a) Translations – Let X = [0, 1) with the Lebesgue σ-algebra B, and
Lebesgue measure λ. Let 0 < θ < 1, define T : X → X by

Tx = x + θ mod 1 = x + θ − bx + θc.
Then, by considering intervals it is easy to see that T is measurable and
measure preserving.

(b) Multiplication by 2 modulo 1 – Let (X,B, λ) be as in example (a), and
let T : X → X be given by

Tx = 2x mod 1 =

{
2x 0 ≤ x < 1/2
2x− 1 1/2 ≤ x < 1.

For any interval [a, b),

T−1[a, b) = [
a

2
,
b

2
) ∪ [

a + 1

2
,
b + 1

2
),



10 Introduction and preliminaries

and
λ

(
T−1[a, b)

)
= b− a = λ ([a, b)) .

Although this map is very simple, it has in fact many facets. For example,
iterations of this map yield the binary expansion of points in [0, 1) i.e., using
T one can associate with each point in [0, 1) an infinite sequence of 0’s and
1’s. To do so, we define the function a1 by

a1(x) =

{
0 if 0 ≤ x < 1/2

1 if 1/2 ≤ x < 1,

then Tx = 2x − a1(x). Now, for n ≥ 1 set an(x) = a1(T
n−1x). Fix x ∈ X,

for simplicity, we write an instead of an(x), then Tx = 2x − a1. Rewriting
we get x = a1

2
+ Tx

2
. Similarly, Tx = a2

2
+ T 2x

2
. Continuing in this manner,

we see that for each n ≥ 1,

x =
a1

2
+

a2

22
+ · · ·+ an

2n
+

T nx

2n
.

Since 0 < T nx < 1, we get

x−
n∑

i=1

ai

2i
=

T nx

2n
→ 0 as n →∞.

Thus, x =
∑∞

i=1
ai

2i . We shall later see that the sequence of digits a1, a2, . . .
forms an i.i.d. sequence of Bernoulli random variables.

(c) Baker’s Transformation – This example is the two-dimensional version
of example (b). The underlying probability space is [0, 1)2 with product
Lebesgue σ-algebra B × B and product Lebesgue measure λ × λ. Define
T : [0, 1)2 → [0, 1)2 by

T (x, y) =

{
(2x, y

2
) 0 ≤ x < 1/2

(2x− 1, y+1
2

) 1/2 ≤ x < 1.

Exercise 1.3.1 Verify that T is invertible, measurable and measure preserv-
ing.

(d) β-transformations – Let X = [0, 1) with the Lebesgue σ-algebra B. Let

β = 1+
√

5
2

, the golden mean. Notice that β2 = β +1. Define a transformation
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T : X → X by

Tx = βx mod 1 =

{
βx 0 ≤ x < 1/β
βx− 1 1/β ≤ x < 1.

Then, T is not measure preserving with respect to Lebesgue measure (give
a counterexample), but is measure preserving with respect to the measure µ
given by

µ(B) =

∫

B

g(x) dx,

where

g(x) =

{
5+3

√
5

10
0 ≤ x < 1/β

5+
√

5
10

1/β ≤ x < 1.

Exercise 1.3.2 Verify that T is measure preserving with respect to µ, and
show that (similar to example (b)) iterations of this map generate expansions
for points x ∈ [0, 1) (known as β-expansions) of the form

x =
∞∑
i=1

bi

βi
,

where bi ∈ {0, 1} and bibi+1 = 0 for all i ≥ 1.

(e) Bernoulli Shifts – Let X = {0, 1, . . . k − 1}Z (or X = {0, 1, . . . k − 1}N),
F the σ-algebra generated by the cylinders. Let p = (p0, p1, . . . , pk−1) be a
positive probability vector, define a measure µ on F by specifying it on the
cylinder sets as follows

µ ({x : x−n = a−n, . . . , xn = an}) = pa−n . . . pan .

Let T : X → X be defined by Tx = y, where yn = xn+1. The map T , called
the left shift, is measurable and measure preserving, since

T−1{x : x−n = a−n, . . . xn = an} = {x : x−n+1 = a−n, . . . , xn+1 = an},

and

µ ({x : x−n+1 = a−n, . . . , xn+1 = an}) = pa−n . . . pan .
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Notice that in case X = {0, 1, . . . k − 1}N, then one should consider cylinder
sets of the form {x : x0 = a0, . . . xn = an}. In this case

T−1{x : x0 = a0, . . . , xn = an} = ∪k−1
j=0{x : x0 = j, x1 = a0, . . . , xn+1 = an},

and it is easy to see that T is measurable and measure preserving.

(f) Markov Shifts – Let (X,F , T ) be as in example (e). We define a measure
ν on F as follows. Let P = (pij) be a stochastic k × k matrix, and q =
(q0, q1, . . . , qk−1) a positive probability vector such that qP = q. Define ν on
cylinders by

ν ({x : x−n = a−n, . . . xn = an}) = qa−npa−na−n+1 . . . pan−1an .

Just as in example (e), one sees that T is measurable and measure pre-
serving.

(g) Stationary Stochastic Processes– Let (Ω,F , IP) be a probability space,
and

. . . , Y−2, Y−1, Y0, Y1, Y2, . . .

a stationary stochastic process on Ω with values in R. Hence, for each k ∈ Z
IP (Yn1 ∈ B1, . . . , Ynr ∈ Br) = IP (Yn1+k ∈ B1, . . . , Ynr+k ∈ Br)

for any n1 < n2 < · · · < nr and any Lebesgue sets B1, . . . , Br. We want to
see this process as coming from a measure preserving transformation.
Let X = RZ = {x = (. . . , x1, x0, x1, . . .) : xi ∈ R} with the product σ-algebra
(i.e. generated by the cylinder sets). Let T : X → X be the left shift i.e.
Tx = z where zn = xn+1. Define φ : Ω → X by

φ(ω) = (. . . , Y−2(ω), Y−1(ω), Y0(ω), Y1(ω), Y2(ω), . . . ).

Then, φ is measurable since if B1, . . . , Br are Lebesgue sets in R, then

φ−1 ({x ∈ X : xn1 ∈ B1, . . . xnr ∈ Br}) = Y −1
n1

(B1) ∩ . . . ∩ Y −1
nr

(Br) ∈ F .

Define a measure µ on X by

µ(E) = IP
(
φ−1(E)

)
.

On cylinder sets µ has the form,

µ ({x ∈ X : xn1 ∈ B1, . . . xnr ∈ Br}) = IP (Yn1 ∈ B1, . . . , Ynr ∈ Br) .
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Since

T−1 ({x : xn1 ∈ B1, . . . xnr ∈ Br}) = {x : xn1+1 ∈ B1, . . . xnr+1 ∈ Br},
stationarity of the process Yn implies that T is measure preserving. Further-
more, if we let πi : X → R be the natural projection onto the ith coordinate,
then Yi(ω) = πi(φ(ω)) = π0 ◦ T i(φ(ω)).

(h) Random Shifts – Let (X,B, µ) be a probability space, and T : X → X an
invertible measure preserving transformation. Then, T−1 is measurable and
measure preserving with respect to µ. Suppose now that at each moment
instead of moving forward by T (x → Tx), we first flip a fair coin to decide
whether we will use T or T−1. We can describe this random system by means
of a measure preserving transformation in the following way.
Let Ω = {−1, 1}Z with product σ-algebra F (i.e. the σ-algebra generated
by the cylinder sets), and the uniform product measure IP (see example (e)),
and let σ : Ω → Ω be the left shift. As in example (e), the map σ is measure
preserving. Now, let Y = Ω × X with the product σ-algebra, and product
measure IP× µ. Define S : Y → Y by

S(ω, x) = (σω, T ω0x).

Then S is invertible (why?), and measure preserving with respect to IP× µ.
To see the latter, for any set C ∈ F , and any A ∈ B, we have

(IP× µ)
(
S−1(C × A)

)
= (IP× µ) ({(ω, x) : S(ω, x) ∈ (C × A))

= (IP× µ) ({(ω, x) : ω0 = 1, σω ∈ C, Tx ∈ A)

+ (IP× µ)
({(ω, x) : ω0 = −1, σω ∈ C, T−1x ∈ A

)

= (IP× µ)
({ω0 = 1} ∩ σ−1C × T−1A

)

+ (IP× µ)
({ω0 = −1} ∩ σ−1C × TA

)

= IP
({ω0 = 1} ∩ σ−1C

)
µ

(
T−1A

)

+ IP
({ω0 = −1} ∩ σ−1C

)
µ (TA)

= IP
({ω0 = 1} ∩ σ−1C

)
µ(A)

+ IP
({ω0 = −1} ∩ σ−1C

)
µ(A)

= IP(σ−1C)µ(A) = IP(C)µ(A) = (IP× µ)(C × A).

(h) continued fractions – Consider ([0, 1),B), where B is the Lebesgue σ-
algebra. Define a transformation T : [0, 1) → [0, 1) by T0 = 0 and for x 6= 0

Tx =
1

x
− b1

x
c.
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Exercise 1.3.3 Show that T is not measure preserving with respect to
Lebesgue measure, but is measure preserving with respect to the so called
Gauss probability measure µ given by

µ(B) =

∫

B

1

log 2

1

1 + x
dx.

An interesting feature of this map is that its iterations generate the continued
fraction expansion for points in (0, 1). For if we define

a1 = a1(x) =

{
1 if x ∈ (1

2
, 1)

n if x ∈ ( 1
n+1

, 1
n
], n ≥ 2,

then, Tx = 1
x
− a1 and hence x =

1

a1 + Tx
. For n ≥ 1, let an = an(x) =

a1(T
n−1x). Then, after n iterations we see that

x =
1

a1 + Tx
= . . . =

1

a1 +
1

a2 +
.. . +

1

an + T nx

.

In fact, if
pn

qn

=
1

a1 +
1

a2 +
.. . +

1

an

, then one can show that {qn} are mono-

tonically increasing, and

|x− pn

qn

| < 1

q2
n

→ 0 as n →∞.

The last statement implies that

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

.
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1.4 Recurrence

Let T be a measure preserving transformation on a probability space (X,F , µ),
and let B ∈ F . A point x ∈ B is said to be B-recurrent if there exists k ≥ 1
such that T kx ∈ B.

Theorem 1.4.1 (Poincaré Recurrence Theorem) If µ(B) > 0, then
a.e. x ∈ B is B-recurrent.

Proof Let F be the subset of B consisting of all elements that are not B-
recurrent. Then,

F = {x ∈ B : T kx /∈ B for all k ≥ 1}.
We want to show that µ(F ) = 0. First notice that F ∩ T−kF = ∅ for all
k ≥ 1, hence T−lF ∩ T−mF = ∅ for all l 6= m. Thus, the sets F, T−1F, . . .
are pairwise disjoint, and µ(T−nF ) = µ(F ) for all n ≥ 1 (T is measure
preserving). If µ(F ) > 0, then

1 = µ(X) ≥ µ
(∪k≥0T

−kF
)

=
∑

k≥0

µ(F ) = ∞,

a contradiction. ¤
The proof of the above theorem implies that almost every x ∈ B returns
to B infinitely often. In other words, there exist infinitely many integers
n1 < n2 < . . . such that T nix ∈ B. To see this, let

D = {x ∈ B : T kx ∈ B for finitely many k ≥ 1}.
Then,

D = {x ∈ B : T kx ∈ F for some k ≥ 0} ⊆ ∪∞k=0T
−kF.

Thus, µ(D) = 0 since µ(F ) = 0 and T is measure preserving.

1.5 Induced and Integral Transformations

1.5.1 Induced Transformations

Let T be a measure preserving transformation on the probability space
(X,F , µ). Let A ⊂ X with µ(A) > 0. By Poincaré’s Recurrence Theo-
rem almost every x ∈ A returns to A infinitely often under the action of T .
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For x ∈ A, let n(x) := inf{n ≥ 1 : T nx ∈ A}. We call n(x) the first return
time of x to A.

Exercise 1.5.1 Show that n is measurable with respect to the σ-algebra
F ∩ A on A.

By Poincaré Theorem, n(x) is finite a.e. on A. In the sequel we remove
from A the set of measure zero on which n(x) = ∞, and we denote the new
set again by A. Consider the σ-algebra F ∩A on A, which is the restriction
of F to A. Furthermore, let µA be the probability measure on A, defined by

µA(B) =
µ(B)

µ(A)
, for B ∈ F ∩ A,

so that (A,F ∩A, µA) is a probability space. Finally, define the induced map
TA : A → A by

TAx = T n(x)x , for x ∈ A.

From the above we see that TA is defined on A. What kind of a transformation
is TA?

Exercise 1.5.2 Show that TA is measurable with respect to the σ-algebra
F ∩ A.

Proposition 1.5.1 TA is measure preserving with respect to µA.

Proof For k ≥ 1, let

Ak = {x ∈ A : n(x) = k}

Bk = {x ∈ X \ A : Tx, . . . , T k−1x 6∈ A, T kx ∈ A}.

Notice that A =
⋃∞

k=1 Ak, and

T−1A = A1 ∪B1 and T−1Bn = An+1 ∪Bn+1. (1.1)

Let C ∈ F∩A, since T is measure preserving it follows that µ(C) = µ(T−1C).
To show that µA(C) = µA(T−1

A C), we show that

µ(T−1
A C) = µ(T−1C).
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Figure 1.1: A tower.

Now,

T−1
A (C) =

∞⋃

k=1

Ak ∩ T−1
A C =

∞⋃

k=1

Ak ∩ T−kC,

hence

µ
(
T−1

A (C)
)

=
∞∑

k=1

µ
(
Ak ∩ T−kC

)
.

On the other hand, using repeatedly (1.1) , one gets for any n ≥ 1,

µ
(
T−1(C)

)
= µ(A1 ∩ T−1C) + µ(B1 ∩ T−1C)

= µ(A1 ∩ T−1C) + µ(T−1(B1 ∩ T−1C))

= µ(A1 ∩ T−1C) + µ(A2 ∩ T−2C) + µ(B2 ∩ T−2C)
...

=
n∑

k=1

µ(Ak ∩ T−kC) + µ(Bn ∩ T−nC).

Since

1 ≥ µ

( ∞⋃
n=1

Bn ∩ T−nC

)
=

∞∑
n=1

µ(Bn ∩ T−nC),

it follows that
lim

n→∞
µ(Bn ∩ T−nC) = 0.
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Thus,

µ(C) = µ(T−1C) =
∞∑

k=1

µ
(
Ak ∩ T−kC

)
= µ(T−1

A C).

This shows that µA(C) = µA(T−1
A C), which implies that TA is measure pre-

serving with respect to µA. ¤

Exercise 1.5.3 Assume T is invertible. Without using Proposition 1.5.1
show that for all C ∈ F ∩ A,

µA(C) = µA(TAC).

Exercise 1.5.4 Let G =
1 +

√
5

2
, so that G2 = G + 1. Consider the set

X = [0,
1

G
)× [0, 1)

⋃
[
1

G
, 1)× [0,

1

G
),

endowed with the product Borel σ-algebra, and the normalized Lebesgue
measure λ× λ. Define the transformation

T (x, y) =





(Gx,
y

G
), (x, y) ∈ [0, 1

G
)× [0, 1]

(Gx− 1,
1 + y

G
), (x, y) ∈ [ 1

G
, 1)× [0, 1

G
).

(a) Show that T is measure preserving with respect to λ× λ.

(b) Determine explicitely the induced transformation of T on the set [0, 1)×
[0, 1

G
).

1.5.2 Integral Transformations

Let S be a measure preserving transformation on a probability space (A,F , ν),
and let f ∈ L1(A, ν) be positive and integer valued. We now construct a mea-
sure preserving transformation T on a probability space (X, C, µ), such that
the original transformation S can be seen as the induced transformation on
X with return time f .

(1) X = {(y, i) : y ∈ A and 1 ≤ i ≤ f(y), i ∈ N},
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(2) C is generated by sets of the form

(B, i) = {(y, i) : y ∈ B and f(y) ≥ i} ,

where B ⊂ A, B ∈ F and i ∈ N.

(3) µ(B, i) =
ν(B)∫

A

f(y) dν(y)
and then extend µ to all of X.

(4) Define T : X → X as follows:

T (y, i) =

{
(y, i + 1), if i + 1 ≤ f(y),

(Sy, 1), if i + 1 > f(y).

Now (X, C, µ, T ) is called an integral system of (A,F , ν, S) under f . We now
show that T is µ-measure preserving. In fact, it suffices to check this on the
generators.

Let B ⊂ A be F -measurable, and let i ≥ 1. We have to discern the
following two cases:

(1) If i > 1, then T−1(B, i) = (B, i− 1) and clearly

µ(T−1(B, i)) = µ(B, i− 1) = µ(B, i) =
ν(B)∫

A
f(y) dν(y)

.

(2) If i = 1, we write An = {y ∈ A : f(y) = n}, and we have

T−1(B, 1) =
∞⋃

n=1

(An ∩ S−1B, n) (disjoint union).

Since
⋃∞

n=1 An = A we therefore find that

µ(T−1(B, 1)) =
∞∑

n=1

ν(An ∩ S−1B)∫

A

f(y) dν(y)
=

ν(S−1B)∫

A

f(y) dν(y)

=
ν(B)∫

A

f(y) dν(y)

= µ(B, 1) .
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This shows that T is measure preserving. Moreover, if we consider the
induced transformation of T on the set (A, 1), then the first return time
n(x, 1) = inf{k ≥ 1 : T k(x, 1) ∈ (A, 1)} is given by n(x, 1) = f(x), and
T(A,1)(x, 1) = (Sx, 1).

1.6 Ergodicity

Definition 1.6.1 Let T be a measure preserving transformation on a proba-
bility space (X,F , µ). The map T is said to be ergodic if for every measurable
set A satisfying T−1A = A, we have µ(A) = 0 or 1.

Theorem 1.6.1 Let (X,F , µ) be a probability space and T : X → X mea-
sure preserving. The following are equivalent:

(i) T is ergodic.

(ii) If B ∈ F with µ(T−1B∆B) = 0, then µ(B) = 0 or 1.

(iii) If A ∈ F with µ(A) > 0, then µ (∪∞n=1T
−nA) = 1.

(iv) If A, B ∈ F with µ(A) > 0 and µ(B) > 0, then there exists n > 0 such
that µ(T−nA ∩B) > 0.

Remark 1.6.1

1. In case T is invertible, then in the above characterization one can replace
T−n by T n.

2. Note that if µ(B4T−1B) = 0, then µ(B \ T−1B) = µ(T−1B \ B) = 0.
Since

B =
(
B \ T−1B

) ∪ (
B ∩ T−1B

)
,

and
T−1B =

(
T−1B \B

) ∪ (
B ∩ T−1B

)
,

we see that after removing a set of measure 0 from B and a set of measure 0
from T−1B, the remaining parts are equal. In this case we say that B equals
T−1B modulo sets of measure 0.
3. In words, (iii) says that if A is a set of positive measure, almost every
x ∈ X eventually (in fact infinitely often) will visit A.
4. (iv) says that elements of B will eventually enter A.
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Proof of Theorem 1.6.1

(i)⇒(ii) Let B ∈ F be such that µ(B∆T−1B) = 0. We shall define a
measurable set C with C = T−1C and µ(C∆B) = 0. Let

C = {x ∈ X : T nx ∈ B i.o. } =
∞⋂

n=1

∞⋃

k=n

T−kB.

Then, T−1C = C, hence by (i) µ(C) = 0 or 1. Furthermore,

µ(C∆B) = µ

( ∞⋂
n=1

∞⋃

k=n

T−kB ∩Bc

)
+ µ

( ∞⋃
n=1

∞⋂

k=n

T−kBc ∩B

)

≤ µ

( ∞⋃

k=1

T−kB ∩Bc

)
+ µ

( ∞⋃

k=1

T−kBc ∩B

)

≤
∞∑

k=1

µ
(
T−kB∆B

)
.

Using induction (and the fact that µ(E∆F ) ≤ µ(E∆G)+µ(G∆F )), one can
show that for each k ≥ 1 one has µ

(
T−kB∆B

)
= 0. Hence, µ(C∆B) = 0

which implies that µ(C) = µ(B). Therefore, µ(B) = 0 or 1.

(ii)⇒(iii) Let µ(A) > 0 and let B =
⋃∞

n=1 T−nA. Then T−1B ⊂ B. Since T
is measure preserving, then µ(B) > 0 and

µ(T−1B∆B) = µ(B \ T−1B) = µ(B)− µ(T−1B) = 0.

Thus, by (ii) µ(B) = 1.

(iii)⇒(iv) Suppose µ(A)µ(B) > 0. By (iii)

µ(B) = µ

(
B ∩

∞⋃
n=1

T−nA

)
= µ

( ∞⋃
n=1

(B ∩ T−nA)

)
> 0.

Hence, there exists k ≥ 1 such that µ(B ∩ T−kA) > 0.

(iv)⇒(i) Suppose T−1A = A with µ(A) > 0. If µ(Ac) > 0, then by (iv) there
exists k ≥ 1 such that µ(Ac ∩ T−kA) > 0. Since T−kA = A, it follows that
µ(Ac ∩ A) > 0, a contradiction. Hence, µ(A) = 1 and T is ergodic. ¤
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1.7 Other Characterizations of Ergodicity

We denote by L0(X,F , µ) the space of all complex valued measurable func-
tions on the probability space (X,F , µ). Let

Lp(X,F , µ) = {f ∈ L0(X,F , µ) :

∫

X

|f |p dµ(x) < ∞}.

We use the subscript R whenever we are dealing only with real-valued func-
tions.
Let (Xi,Fi, µi), i = 1, 2 be two probability spaces, and T : X1 → X2 a mea-
sure preserving transformation i.e., µ2(A) = µ1(T

−1A). Define the induced
operator UT : L0(X2,F2, µ2) → L0(X1,F1, µ1) by

UT f = f ◦ T.

The following properties of UT are easy to prove.

Proposition 1.7.1 The operator UT has the following properties:

(i) UT is linear

(ii) UT (fg) = UT (f)UT (g)

(iii) UT c = c for any constant c.

(iv) UT is a positive linear operator

(v) UT 1B = 1B ◦ T = 1T−1B for all B ∈ F2.

(vi)
∫

X1
UT f dµ1 =

∫
X2

f dµ2 for all f ∈ L0(X2,F2, µ2), (where if one side
doesn’t exist or is infinite, then the other side has the same property).

(vii) Let p ≥ 1. Then, UT Lp(X2,F2, µ2) ⊂ Lp(X1,F1, µ1), and ||UT f ||p =
||f ||p for all f ∈ Lp(X2,F2, µ2).

Exercise 1.7.1 Prove Proposition 1.7.1

Using the above properties, we can give the following characterization of
ergodicity
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Theorem 1.7.1 Let (X,F , µ) be a probability space, and T : X → X mea-
sure preserving. The following are equivalent:

(i) T is ergodic.

(ii) If f ∈ L0(X,F , µ), with f(Tx) = f(x) for all x, then f is a constant
a.e.

(iii) If f ∈ L0(X,F , µ), with f(Tx) = f(x) for a.e. x, then f is a constant
a.e.

(iv) If f ∈ L2(X,F , µ), with f(Tx) = f(x) for all x, then f is a constant
a.e.

(v) If f ∈ L2(X,F , µ), with f(Tx) = f(x) for a.e. x, then f is a constant
a.e.

Proof

The implications (iii)⇒(ii), (ii)⇒(iv), (v)⇒(iv), and (iii)⇒(v) are all clear.
It remains to show (i)⇒(iii) and (iv)⇒(i).

(i)⇒(iii) Suppose f(Tx) = f(x) a.e. and assume without any loss of gener-
ality that f is real (otherwise we consider separately the real and imaginary
parts of f). For each n ≥ 1 and k ∈ Z, let

X(k, n) = {x ∈ X :
k

2n
≤ f(x) <

k + 1

2n
}.

Then, T−1X(k, n)∆X(k, n) ⊆ {x : f(Tx) 6= f(x)} which implies that

µ
(
T−1X(k, n)∆X(k, n)

)
= 0.

By ergodicity of T , µ(X(k, n)) = 0 or 1, for each k ∈ Z. On the other hand,
for each n ≥ 1, we have

X =
⋃

k∈Z
X(k, n) (disjoint union).

Hence, for each n ≥ 1, there exists a unique integer kn such that µ (X(kn, n)) =

1. In fact, X(k1, 1) ⊇ X(k2, 2) ⊇ . . ., and {kn

2n
} is a bounded increasing se-

quence, hence limn→∞
kn

2n
exists. Let Y =

⋂
n≥1 X(kn, n), then µ(Y ) = 1.
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Now, if x ∈ Y , then 0 ≤ |f(x) − kn/2n| < 1/2n for all n. Hence, f(x) =

limn→∞
kn

2n
, and f is a constant on Y .

(iv)⇒(i) Suppose T−1A = A and µ(A) > 0. We want to show that µ(A) = 1.
Consider 1A, the indicator function of A. We have 1A ∈ L2(X,F , µ), and
1A ◦ T = 1T−1A = 1A. Hence, by (iv), 1A is a constant a.e., hence 1A = 1 a.e.
and therefore µ(A) = 1. ¤

1.8 Examples of Ergodic Transformations

Example 1–Irrational Rotations. Consider ([0, 1),B, λ), where B is the Lebesgue
σ-algebra, and λ Lebesgue measure. For θ ∈ (0, 1), consider the transforma-
tion Tθ : [0, 1) → [0, 1) defined by Tθx = x + θ (mod 1). We have seen
in example (a) that Tθ is measure preserving with respect λ. When is Tθ

ergodic?

If θ is rational, then Tθ is not ergodic. Consider for example θ = 1/4, then
the set

A = [0, 1/8) ∪ [1/4, 3/8) ∪ [1/2, 5/8) ∪ [3/4, 7/8)

is Tθ-invariant but µ(A) = 1/2.

Exercise 1.8.1 Suppose θ =
p

q
with gcd(p, q) = 1. Find a non-trivial Tθ-

invariant set. Conclude that Tθ is not ergodic if θ is a rational.

Claim. Tθ is ergodic if and only if θ is irrational.

Proof of Claim.

(⇒) The contrapositive statement is given in Exercise 1.8.1 i.e. if θ is rational,
then Tθ is not ergodic.

(⇐) Suppose θ is irrational, and let f ∈ L2(X,B, λ) be Tθ-invariant. Write
f in its Fourier series

f(x) =
∑
n∈Z

ane2πinx.
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Since f(Tθx) = f(x), then

f(Tθx) =
∑
n∈Z

ane2πin(x+θ) =
∑
n∈Z

ane
2πinθe2πinx

= f(x) =
∑
n∈Z

ane
2πinx.

Hence,
∑

n∈Z an(1 − e2πinθ)e2πinx = 0. By the uniqueness of the Fourier
coefficients, we have an(1 − e2πinθ) = 0 for all n ∈ Z. If n 6= 0, since θ is
irrational we have 1 − e2πinθ 6= 0. Thus, an = 0 for all n 6= 0, and therefore
f(x) = a0 is a constant. By Theorem 1.7.1, Tθ is ergodic.

Exercise 1.8.2 Consider the probability space ([0, 1),B × B, λ× λ), where
as above B is the Lebesgue σ-algebra on [0, 1), and λ normalized Lebesgue
measure. Suppose θ ∈ (0, 1) is irrational, and define Tθ×Tθ : [0, 1)× [0, 1) →
[0, 1)× [0, 1) by

Tθ × Tθ(x, y) = (x + θ mod (1) , y + θ mod (1) ) .

Show that Tθ × Tθ is measure preserving, but is not ergodic.

Example 2–One (or Two) sided shift. Let X = {0, 1, . . . k − 1}N, F the σ-
algebra generated by the cylinders, and µ the product measure defined on
cylinder sets by

µ ({x : x0 = a0, . . . xn = an}) = pa0 . . . pan ,

where p = (p0, p1, . . . , pk−1) is a positive probability vector. Consider the
left shift T defined on X by Tx = y, where yn = xn+1 (See Example (e) in
Subsection 1.3). We show that T is ergodic. Let E be a measurable subset
of X which is T -invariant i.e., T−1E = E. For any ε > 0, by Lemma 1.2.1
(see subsection 1.2), there exists A ∈ F which is a finite disjoint union of
cylinders such that µ(E∆A) < ε. Then

|µ(E)− µ(A)| = |µ(E \ A)− µ(A \ E)|
≤ µ(E \ A) + µ(A \ E) = µ(E∆A) < ε.

Since A depends on finitely many coordinates only, there exists n0 > 0
such that T−n0A depends on different coordinates than A. Since µ is a
product measure, we have

µ(A ∩ T−n0A) = µ(A)µ(T−n0A) = µ(A)2.
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Further,

µ(E∆T−n0A) = µ(T−n0E∆T−n0A) = µ(E∆A) < ε,

and
µ

(
E∆(A ∩ T−n0A)

) ≤ µ(E∆A) + µ(E∆T−n0A) < 2ε.

Hence,

|µ(E)− µ((A ∩ T−n0A))| ≤ µ
(
E∆(A ∩ T−n0A)

)
< 2ε.

Thus,

|µ(E)− µ(E)2| ≤ |µ(E)− µ(A)2|+ |µ(A)2 − µ(E)2|
= |µ(E)− µ((A ∩ T−n0A))|+ (µ(A) + µ(E))|µ(A)− µ(E)|
< 4ε.

Since ε > 0 is arbitrary, it follows that µ(E) = µ(E)2, hence µ(E) = 0 or 1.
Therefore, T is ergodic.

The following lemma provides, in some cases, a useful tool to verify that a
measure preserving transformation defined on ([0, 1),B, µ) is ergodic, where
B is the Lebesgue σ-algebra, and µ is a probability measure equivalent to
Lebesgue measure λ (i.e., µ(A) = 0 if and only if λ(A) = 0).

Lemma 1.8.1 (Knopp’s Lemma) . If B is a Lebesgue set and C is a class
of subintervals of [0, 1) satisfying

(a) every open subinterval of [0, 1) is at most a countable union of disjoint
elements from C,

(b) ∀A ∈ C , λ(A ∩B) ≥ γλ(A), where γ > 0 is independent of A,

then λ(B) = 1.

Proof The proof is done by contradiction. Suppose λ(Bc) > 0. Given ε > 0
there exists by Lemma 1.2.1 a set Eε that is a finite disjoint union of open
intervals such that λ(Bc4Eε) < ε. Now by conditions (a) and (b) (that
is, writing Eε as a countable union of disjoint elements of C) one gets that
λ(B ∩ Eε) ≥ γλ(Eε).
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Also from our choice of Eε and the fact that

λ(Bc4Eε) ≥ λ(B ∩ Eε) ≥ γλ(Eε) ≥ γλ(Bc ∩ Eε) > γ(λ(Bc)− ε),

we have that

γ(λ(Bc)− ε) < λ(Bc4Eε) < ε .

Hence γλ(Bc) < ε + γε, and since ε > 0 is arbitrary, we get a contradiction.
¤

Example 3–Multiplication by 2 modulo 1–Consider ([0, 1),B, λ) be as in Ex-
ample (1) above, and let T : X → X be given by

Tx = 2x mod 1 =

{
2x 0 ≤ x < 1/2
2x− 1 1/2 ≤ x < 1,

(see Example (b), subsection 1.3). We have seen that T is measure preserving.
We will use Lemma 1.8.1 to show that T is ergodic. Let C be the collection
of all intervals of the form [k/2n, (k + 1)/2n) with n ≥ 1 and 0 ≤ k ≤ 2n− 1.
Notice that the the set {k/2n : n ≥ 1, 0 ≤ k < 2n − 1} of dyadic rationals
is dense in [0, 1), hence each open interval is at most a countable union of
disjoint elements of C. Hence, C satisfies the first hypothesis of Knopp’s
Lemma. Now, T n maps each dyadic interval of the form [k/2n, (k + 1)/2n)
linearly onto [0, 1), (we call such an interval dyadic of order n); in fact,
T nx = 2nx mod(1). Let B ∈ B be T -invariant, and assume λ(B) > 0. Let
A ∈ C, and assume that A is dyadic of order n. Then, T nA = [0, 1) and

λ(A ∩B) = λ(A ∩ T−nB) =
1

λ(A)
λ(T nA ∩B)

=
1

2n
λ(B) = λ(A)λ(B).

Thus, the second hypothesis of Knopp’s Lemma is satisfied with γ = λ(B) >
0. Hence, λ(B) = 1. Therefore T is ergodic.

Exercise 1.8.3 Let β > 1 be a non-integer, and consider the transformation
Tβ : [0, 1) → [0, 1) given by Tβx = βx mod(1) = βx − bβxc. Use Lemma
1.8.1 to show that Tβ is ergodic with respect to Lebesgue measure λ, i.e. if
T−1

β A = A, then λ(A) = 0 or 1.
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Example 4–Induced transformations of ergodic transformations– Let T be an
ergodic measure preserving transformation on the probability space (X,F , µ),
and A ∈ F with µ(A) > 0. Consider the induced transformation TA on
(A,F ∩ A, µA) of T (see subsection 1.5). Recall that TAx = T n(x)x, where
n(x) := inf{n ≥ 1 : T nx ∈ A}. Let (as before)

Ak = {x ∈ A : n(x) = k}

Bk = {x ∈ X \ A : Tx, . . . , T k−1x 6∈ A, T kx ∈ A}.
Proposition 1.8.1 If T is ergodic on (X,F , µ), then TA is ergodic on (A,F∩
A, µA).

Proof Let C ∈ F ∩ A be such that T−1
A C = C. We want to show that

µA(C) = 0 or 1; equivalently, µ(C) = 0 or µ(C) = µ(A). Since A =
⋃

k≥1 Ak,

we have C = T−1
A C =

⋃
k≥1 Ak ∩ T−kC. Let E =

⋃
k≥1 Bk ∩ T−kC, and

F = E∪C (disjoint union). Recall that (see subsection 1.5) T−1A = A1∪B1,
and T−1Bk = Ak+1 ∪Bk+1. Hence,

T−1F = T−1E ∪ T−1C

=
⋃

k≥1

[
(Ak+1 ∪Bk+1) ∩ T−(k+1)C

] ∪ [
(A1 ∪B1) ∩ T−1C

]

=
⋃

k≥1

(Ak ∩ T−kC) ∪
⋃

k≥1

(Bk ∩ T−kC)

= C ∪ E = F.

Hence, F is T -invariant, and by ergodicity of T we have µ(F ) = 0 or 1.
–If µ(F ) = 0, then µ(C) = 0, and hence µA(C) = 0.
–If µ(F ) = 1, then µ(X \ F ) = 0. Since

X \ F = (A \ C) ∪ ((X \ A) \ E) ⊇ A \ C,

it follows that
µ(A \ C) ≤ µ(X \ F ) = 0.

Since µ(A \ C) = µ(A)− µ(C), we have µ(A) = µ(C), i.e., µA(C) = 1. ¤

Exercise 1.8.4 Show that if TA is ergodic and µ
(⋃

k≥1 T−kA
)

= 1, then, T
is ergodic.



Chapter 2

The Ergodic Theorem

2.1 The Ergodic Theorem and its consequences

The Ergodic Theorem is also known as Birkhoff’s Ergodic Theorem or the
Individual Ergodic Theorem (1931). This theorem is in fact a generalization
of the Strong Law of Large Numbers (SLLN) which states that for a sequence
Y1, Y2, . . . of i.i.d. random variables on a probability space (X,F , µ), with
E|Yi| < ∞; one has

lim
n→∞

1

n

n∑
i=1

Yi = EY1 (a.e.).

For example consider X = {0, 1}N, F the σ-algebra generated by the cylinder
sets, and µ the uniform product measure, i.e.,

µ ({x : x1 = a1, x2 = a2, . . . , xn = an}) = 1/2n.

Suppose one is interested in finding the frequency of the digit 1. More pre-
cisely, for a.e. x we would like to find

lim
n→∞

1

n
#{1 ≤ i ≤ n : xi = 1}.

Using the Strong Law of Large Numbers one can answer this question easily.
Define

Yi(x) :=

{
1, if xi = 1,
0, otherwise.

29
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Since µ is product measure, it is easy to see that Y1, Y2, . . . form an i.i.d.
Bernoulli process, and EYi = E|Yi| = 1/2. Further, #{1 ≤ i ≤ n : xi = 1} =∑n

i=1 Yi(x). Hence, by SLLN one has

lim
n→∞

1

n
#{1 ≤ i ≤ n : xi = 1} =

1

2
.

Suppose now we are interested in the frequency of the block 011, i.e., we
would like to find

lim
n→∞

1

n
#{1 ≤ i ≤ n : xi = 0, xi+1 = 1, xi+2 = 1}.

We can start as above by defining random variables

Zi(x) :=

{
1, if xi = 0, xi+1 = 1, xi+2 = 1,
0, otherwise.

Then,

1

n
#{1 ≤ i ≤ n : xi = 0, xi+1 = 1, xi+2 = 1} =

1

n

n∑
i=1

Zi(x).

It is not hard to see that this sequence is stationary but not independent. So
one cannot directly apply the strong law of large numbers. Notice that if T
is the left shift on X, then Yn = Y1 ◦ T n−1 and Zn = Z1 ◦ T n−1.
In general, suppose (X,F , µ) is a probability space and T : X → X a measure
preserving transformation. For f ∈ L1(X,F , µ), we would like to know under

what conditions does the limit limn→∞
1

n

n−1∑
i=0

f(T ix) exist a.e. If it does exist

what is its value? This is answered by the Ergodic Theorem which was
originally proved by G.D. Birkhoff in 1931. Since then, several proofs of this
important theorem have been obtained; here we present a recent proof given
by T. Kamae and M.S. Keane in [KK].

Theorem 2.1.1 (The Ergodic Theorem) Let (X,F , µ) be a probability space
and T : X → X a measure preserving transformation. Then, for any f in
L1(µ),

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) = f ∗(x)

exists a.e., is T -invariant and
∫

X
f dµ =

∫
X

f ∗ dµ. If moreover T is ergodic,
then f ∗ is a constant a.e. and f ∗ =

∫
X

f dµ.
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For the proof of the above theorem, we need the following simple lemma.

Lemma 2.1.1 Let M > 0 be an integer, and suppose {an}n≥0, {bn}n≥0 are
sequences of non-negative real numbers such that for each n = 0, 1, 2, . . . there
exists an integer 1 ≤ m ≤ M with

an + · · ·+ an+m−1 ≥ bn + · · ·+ bn+m−1.

Then, for each positive integer N > M , one has

a0 + · · ·+ aN−1 ≥ b0 + · · ·+ bN−M−1.

Proof of Lemma 2.1.1 Using the hypothesis we recursively find integers
m0 < m1 < . . . < mk < N with the following properties

m0 ≤ M, mi+1 −mi ≤ M for i = 0, . . . , k − 1, and N −mk < M,

a0 + . . . + am0−1 ≥ b0 + . . . + bm0−1,

am0 + . . . + am1−1 ≥ bm0 + . . . + bm1−1,

...

amk−1
+ . . . + amk−1 ≥ bmk−1

+ . . . + bmk−1.

Then,

a0 + . . . + aN−1 ≥ a0 + . . . + amk−1

≥ b0 + . . . + bmk−1 ≥ b0 + . . . bN−M−1.

¤
Proof of Theorem 2.1.1 Assume with no loss of generality that f ≥ 0
(otherwise we write f = f+ − f−, and we consider each part separately).

Let fn(x) = f(x) + . . . + f(T n−1x), f(x) = lim supn→∞
fn(x)

n
, and f(x) =

lim infn→∞
fn(x)

n
. Then f and f are T -invariant. This follows from

f(Tx) = lim sup
n→∞

fn(Tx)

n

= lim sup
n→∞

[
fn+1(x)

n + 1
· n + 1

n
− f(x)

n

]

= lim sup
n→∞

fn+1(x)

n + 1
= f(x).



32 The Ergodic Theorem

(Similarly f is T -invariant). Now, to prove that f ∗ exists, is integrable and
T -invariant, it is enough to show that

∫

X

f dµ ≥
∫

X

f dµ ≥
∫

X

f dµ.

For since f − f ≥ 0, this would imply that f = f = f ∗. a.e.

We first prove that
∫

X
fdµ ≤ ∫

X
f dµ. Fix any 0 < ε < 1, and let L > 0 be

any real number. By definition of f , for any x ∈ X, there exists an integer
m > 0 such that

fm(x)

m
≥ min(f(x), L)(1− ε).

Now, for any δ > 0 there exists an integer M > 0 such that the set

X0 = {x ∈ X : ∃ 1 ≤ m ≤ M with fm(x) ≥ m min(f(x), L)(1− ε)}
has measure at least 1− δ. Define F on X by

F (x) =

{
f(x) x ∈ X0

L x /∈ X0.

Notice that f ≤ F (why?). For any x ∈ X, let an = an(x) = F (T nx), and
bn = bn(x) = min(f(x), L)(1 − ε) (so bn is independent of n).We now show
that {an} and {bn} satisfy the hypothesis of Lemma 2.1.1 with M > 0 as
above. For any n = 0, 1, 2, . . .

–if T nx ∈ X0, then there exists 1 ≤ m ≤ M such that

fm(T nx) ≥ m min(f(T nx), L)(1− ε)

= m min(f(x), L)(1− ε)

= bn + . . . + bn+m−1.

Hence,

an + . . . + an+m−1 = F (T nx) + . . . + F (T n+m−1x)

≥ f(T nx) + . . . + f(T n+m−1x) = fm(T nx)

≥ bn + . . . + bn+m−1.

–If T nx /∈ X0, then take m = 1 since

an = F (T nx) = L ≥ min(f(x), L)(1− ε) = bn.
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Hence by Lemma 2.1.1 for all integers N > M one has

F (x) + . . . + F (TN−1x) ≥ (N −M) min(f(x), L)(1− ε).

Integrating both sides, and using the fact that T is measure preserving one
gets

N

∫

X

F (x) dµ(x) ≥ (N −M)

∫

X

min(f(x), L)(1− ε) dµ(x).

Since ∫

X

F (x) dµ(x) =

∫

X0

f(x) dµ(x) + Lµ(X \X0),

one has
∫

X

f(x) dµ(x) ≥
∫

X0

f(x) dµ(x)

=

∫

X

F (x) dµ(x)− Lµ(X \X0)

≥ (N −M)

N

∫

X

min(f(x), L)(1− ε) dµ(x)− Lδ.

Now letting first N →∞, then δ → 0, then ε → 0, and lastly L →∞ one
gets together with the monotone convergence theorem that f is integrable,
and ∫

X

f(x) dµ(x) ≥
∫

X

f(x) dµ(x).

We now prove that

∫

X

f(x) dµ(x) ≤
∫

X

f(x) dµ(x).

Fix ε > 0, for any x ∈ X there exists an integer m such that

fm(x)

m
≤ (f(x) + ε).

For any δ > 0 there exists an integer M > 0 such that the set

Y0 = {x ∈ X : ∃ 1 ≤ m ≤ M with fm(x) ≤ m (f(x) + ε)}
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has measure at least 1− δ. Define G on X by

G(x) =

{
f(x) x ∈ Y0

0 x /∈ Y0.

Notice that G ≤ f . Let bn = G(T nx), and an = f(x)+ε (so an is independent
of n). One can easily check that the sequences {an} and {bn} satisfy the
hypothesis of Lemma 2.1.1 with M > 0 as above. hence

G(x) + . . . + G(TN−M−1x) ≤ N(f(x) + ε).

Integrating both sides yields

(N −M)

∫

X

G(x)dµ(x) ≤ N(

∫

X

f(x)dµ(x) + ε).

Since f ≥ 0, the measure ν defined by ν(A) =
∫

A
f(x) dµ(x) is absolutely

continuous with respect to the measure µ. Hence, there exists δ0 > 0 such
that if µ(A) < δ, then ν(A) < δ0. Since µ(X \ Y0) < δ, then ν(X \ Y0) =∫

X\Y0
f(x)dµ(x) < δ0. Hence,

∫

X

f(x) dµ(x) =

∫

X

G(x) dµ(x) +

∫

X\Y0

f(x) dµ(x)

≤ N

N −M

∫

X

(f(x) + ε) dµ(x) + δ0.

Now, let first N → ∞, then δ → 0 (and hence δ0 → 0), and finally ε → 0,
one gets ∫

X

f(x) dµ(x) ≤
∫

X

f(x) dµ(x).

This shows that ∫

X

f dµ ≥
∫

X

f dµ ≥
∫

X

f dµ,

hence, f = f = f ∗ a.e., and f ∗ is T -invariant. In case T is ergodic, then the
T -invariance of f ∗ implies that f ∗ is a constant a.e. Therefore,

f ∗(x) =

∫

X

f ∗(y)dµ(y) =

∫

X

f(y) dµ(y).

¤
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Remarks
(1) Let us study further the limit f ∗ in the case that T is not ergodic. Let I
be the sub-σ-algebra of F consisting of all T -invariant subsets A ∈ F . Notice
that if f ∈ L1(µ), then the conditional expectation of f given I (denoted by
Eµ(f |I)), is the unique a.e. I-measurable L1(µ) function with the property
that ∫

A

f(x) dµ(x) =

∫

A

Eµ(f |I)(x) dµ(x)

for all A ∈ I i.e., T−1A = A. We claim that f ∗ = Eµ(f |I). Since the limit
function f ∗ is T -invariant, it follows that f ∗ is I-measurable. Furthermore,
for any A ∈ I, by the ergodic theorem and the T -invariance of 1A,

lim
n→∞

1

n

n−1∑
i=0

(f1A)(T ix) = 1A(x) lim
n→∞

1

n

n−1∑
i=0

f(T ix) = 1A(x)f ∗(x) a.e.

and ∫

X

f1A(x) dµ(x) =

∫

X

f ∗1A(x) dµ(x).

This shows that f ∗ = Eµ(f |I).

(2) Suppose T is ergodic and measure preserving with respect to µ, and let
ν be a probability measure which is equivalent to µ (i.e. µ and ν have the
same sets of measure zero so µ(A) = 0 if and only if ν(A) = 0), then for
every f ∈ L1(µ) one has

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫

X

f dµ

ν a.e.

Exercise 2.1.1 (Kac’s Lemma) Let T be an invertible, measure preserving
and ergodic transformation on a probability space (X,F , µ). Let A be a
measurable subset of X of positive µ measure, and denote by n the first
return time map and let TA be the induced transformation of T on A (see
section 1.5). Prove that ∫

A

n(x) dµ = 1.
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Conclude that n(x) ∈ L1(A, µA), and that

lim
n→∞

1

n

n−1∑
i=0

n(T i
A(x)) =

1

µ(A)
,

almost everywhere on A.

Exercise 2.1.2 Let β =
1 +

√
5

2
, and consider the transformation Tβ :

[0, 1) → [0, 1) given by Tβx = βx mod(1) = βx − bβxc. Define b1 on
[0, 1) by

b1(x) =

{
0 if 0 ≤ x < 1/β
1 if 1/β ≤ x < 1,

Fix k ≥ 0. Find the a.e. value (with respect to Lebesgue measure) of the
following limit

lim
n→∞

1

n
#{1 ≤ i ≤ n : bi = 0, bi+1 = 0, . . . , bi+k = 0}.

Using the Ergodic Theorem, one can give yet another characterization of
ergodicity.

Corollary 2.1.1 Let (X,F , µ) be a probability space, and T : X → X a
measure preserving transformation. Then, T is ergodic if and only if for all
A,B ∈ F , one has

lim
n→∞

1

n− 1

n∑
i=0

µ(T−iA ∩B) = µ(A)µ(B). (2.1)

Proof Suppose T is ergodic, and let A,B ∈ F . Since the indicator function
1A ∈ L1(X,F , µ), by the ergodic theorem one has

lim
n→∞

1

n

n−1∑
i=0

1A(T ix) =

∫

X

1A(x) dµ(x) = µ(A) a.e.
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Then,

lim
n→∞

1

n

n−1∑
i=0

1T−iA∩B(x) = lim
n→∞

1

n

n−1∑
i=0

1T−iA(x)1B(x)

= 1B(x) lim
n→∞

1

n

n−1∑
i=0

1A(T ix)

= 1B(x)µ(A) a.e.

Since for each n, the function limn→∞ 1
n

∑n−1
i=0 1T−iA∩B is dominated by the

constant function 1, it follows by the dominated convergence theorem that

lim
n→∞

1

n

n∑
i=0

µ(T−iA ∩B) =

∫

X

lim
n→∞

1

n

n−1∑
i=0

1T−iA∩B(x) dµ(x)

=

∫

X

1Bµ(A) dµ(x) = µ(A)µ(B).

Conversely, suppose (2.1) holds for every A,B ∈ F . Let E ∈ F be such that
T−1E = E and µ(E) > 0. By invariance of E, we have µ(T−iE∩E) = µ(E),
hence

lim
n→∞

1

n

n−1∑
i=0

µ(T−iE ∩ E) = µ(E).

On the other hand, by (2.1)

lim
n→∞

1

n

n−1∑
i=0

µ(T−iE ∩ E) = µ(E)2.

Hence, µ(E) = µ(E)2. Since µ(E) > 0, this implies µ(E) = 1. Therefore, T
is ergodic. ¤

To show ergodicity one needs to verify equation (2.1) for sets A and B
belonging to a generating semi-algebra only as the next proposition shows.

Proposition 2.1.1 Let (X,F , µ) be a probability space, and S a generating
semi-algebra of F . Let T : X → X be a measure preserving transformation.
Then, T is ergodic if and only if for all A,B ∈ S, one has

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B). (2.2)
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Proof We only need to show that if (2.2) holds for all A,B ∈ S, then it
holds for all A,B ∈ F . Let ε > 0, and A,B ∈ F . Then, by Lemma 1.2.1
(subsection 1.2) there exist sets A0, B0 each of which is a finite disjoint union
of elements of S such that

µ(A∆A0) < ε, and µ(B∆B0) < ε.

Since,

(T−iA ∩B)∆(T−iA0 ∩B0) ⊆ (T−iA∆T−iA0) ∪ (B∆B0),

it follows that

|µ(T−iA ∩B)− µ(T−iA0 ∩B0)| ≤ µ
[
(T−iA ∩B)∆(T−iA0 ∩B0)

]

≤ µ(T−iA∆T−iA0) + µ(B∆B0)

< 2ε.

Further,

|µ(A)µ(B)− µ(A0)µ(B0)| ≤ µ(A)|µ(B)− µ(B0)|+ µ(B0)|µ(A)− µ(A0)|
≤ |µ(B)− µ(B0)|+ |µ(A)− µ(A0)|
≤ µ(B∆B0) + µ(A∆A0)

< 2ε.

Hence,

∣∣∣∣∣

(
1

n

n−1∑
i=0

µ(T−iA ∩B)− µ(A)µ(B)

)
−

(
1

n

n−1∑
i=0

µ(T−iA0 ∩B0)− µ(A0)µ(B0)

)∣∣∣∣∣

≤ 1

n

n−1∑
i=0

∣∣µ(T−iA ∩B) + µ(T−iA0 ∩B0)
∣∣− |µ(A)µ(B)− µ(A0)µ(B0)|

< 4ε.

Therefore,

lim
n→∞

[
1

n

n−1∑
i=0

µ(T−iA ∩B)− µ(A)µ(B)

]
= 0.

¤
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Theorem 2.1.2 Suppose µ1 and µ2 are probability measures on (X,F), and
T : X → X is measurable and measure preserving with respect to µ1 and µ2.
Then,

(i) if T is ergodic with respect to µ1, and µ2 is absolutely continuous with
respect to µ1, then µ1 = µ2,

(ii) if T is ergodic with respect to µ1 and µ2, then either µ1 = µ2 or µ1 and
µ2 are singular with respect to each other.

Proof (i) Suppose T is ergodic with respect to µ1 and µ2 is absolutely con-
tinuous with respect to µ1. For any A ∈ F , by the ergodic theorem for a.e.
x one has

lim
n→∞

1

n

n−1∑
i=0

1A(T ix) = µ1(A).

Let

CA = {x ∈ X : lim
n→∞

1

n

n−1∑
i=0

1A(T ix) = µ1(A)},

then µ1(CA) = 1, and by absolute continuity of µ2 one has µ2(CA) = 1. Since
T is measure preserving with respect to µ2, for each n ≥ 1 one has

1

n

n−1∑
i=0

∫

X

1A(T ix) dµ2(x) = µ2(A).

On the other hand, by the dominated convergence theorem one has

lim
n→∞

∫

X

1

n

n−1∑
i=0

1A(T ix)dµ2(x) =

∫

X

µ1(A) dµ2(x).

This implies that µ1(A) = µ2(A). Since A ∈ F is arbitrary, we have µ1 = µ2.

(ii) Suppose T is ergodic with respect to µ1 and µ2. Assume that µ1 6= µ2.
Then, there exists a set A ∈ F such that µ1(A) 6= µ2(A). For i = 1, 2 let

Ci = {x ∈ X : lim
n→∞

1

n

n−1∑
j=0

1A(T jx) = µi(A)}.
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By the ergodic theorem µi(Ci) = 1 for i = 1, 2. Since µ1(A) 6= µ2(A), then
C1 ∩ C2 = ∅. Thus µ1 and µ2 are supported on disjoint sets, and hence µ1

and µ2 are mutually singular. ¤
We end this subsection with a short discussion that the assumption of er-
godicity is not very restrictive. Let T be a transformation on the probability
space (X,F , µ), and suppose T is measure preserving but not necessarily
ergodic. We assume that X is a complete separable metric space, and F the
corresponding Borel σ-algebra (in order to make sure that the conditional
expectation is well-defined a.e.). Let I be the sub-σ-algebra of T -invariant
measurable sets. We can decompose µ into T -invariant ergodic components
in the following way. For x ∈ X, define a measure µx on F by

µx(A) = Eµ(1A|I)(x).

Then, for any f ∈ L1(X,F , µ),
∫

X

f(y) dµx(y) = Eµ(f |I)(x).

Note that

µ(A) =

∫

X

Eµ(1A|I)(x) dµ(x) =

∫

X

µx(A) dµ(x),

and that Eµ(1A|I)(x) is T -invariant. We show that µx is T -invariant and
ergodic for a.e. x ∈ X. So let A ∈ F , then for a.e. x

µx(T
−1A) = Eµ(1A ◦ T |I)(x) = Eµ(IA|I)(Tx) = Eµ(IA|I)(x) = µx(A).

Now, let A ∈ F be such that T−1A = A. Then, 1A is T -invariant, and hence
I-measurable. Then,

µx(A) = Eµ(1A|I)(x) = 1A(x) a.e.

Hence, for a.e. x and for any B ∈ F ,

µx(A ∩B) = Eµ(1A1B|I)(x) = 1A(x)Eµ(1B|I)(x) = µx(A)µx(B).

In particular, if A = B, then the latter equality yields µx(A) = µx(A)2 which
implies that for a.e. x, µx(A) = 0 or 1. Therefore, µx is ergodic. (One
in fact needs to work a little harder to show that one can find a set N of
µ-measure zero, such that for any x ∈ X \N , and any T -invariant set A, one
has µx(A) = 0 or 1. In the above analysis the a.e. set depended on the choice
of A. Hence, the above analysis is just a rough sketch of the proof of what
is called the ergodic decomposition of measure preserving transformations.)
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2.2 Characterization of Irreducible Markov

Chains

Consider the Markov Chain in Example(f) subsection 1.3. That is X =
{0, 1, . . . N − 1}Z, F the σ-algebra generated by the cylinders, T : X → X
the left shift, and µ the Markov measure defined by the stochastic N × N
matrix P = (pij), and the positive probability vector π = (π0, π1, . . . , πN−1)
satisfying πP = π. That is

µ({x : x0 = i0, x1 = i1, . . . xn = in}) = πi0pi0i1pi1i2 . . . pin−1in .

We want to find necessary and sufficient conditions for T to be ergodic. To
achieve this, we first set

Q = lim
n→∞

1

n

n−1∑

k=0

P k,

where P k = (p
(k)
ij ) is the kth power of the matrix P , and P 0 is the k × k

identity matrix. More precisely, Q = (qij), where

qij = lim
n→∞

1

n

n−1∑

k=0

p
(k)
ij .

Lemma 2.2.1 For each i, j ∈ {0, 1, . . . N−1}, the limit limn→∞ 1
n

∑n−1
k=0 p

(k)
ij

exists, i.e., qij is well-defined.

Proof For each n,

1

n

n−1∑

k=0

p
(k)
ij =

1

πi

1

n

n−1∑

k=0

µ({x ∈ X : x0 = i, xk = j}).

Since T is measure preserving, by the ergodic theorem,

lim
n→∞

1

n

n−1∑

k=0

1{x:xk=j}(x) = lim
n→∞

1

n

n−1∑

k=0

1{x:x0=j}(T
kx) = f ∗(x),

where f ∗ is T -invariant and integrable. Then,

lim
n→∞

1

n

n−1∑

k=0

1{x:x0=i,xk=j}(x) = 1{x:x0=i}(x) lim
n→∞

1

n

n−1∑

k=0

1{x:x0=j}(T
kx) = f ∗(x)1{x:x0=i}(x).
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Since 1
n

∑n−1
k=0 1{x:x0=i,xk=j}(x) ≤ 1 for all n, by the dominated convergence

theorem,

qij =
1

πi

lim
n→∞

1

n

n−1∑

k=0

µ({x ∈ X : x0 = i, xk = j})

=
1

πi

∫

X

lim
n→∞

1

n

n−1∑

k=0

1{x:x0=i,xk=j}(x) dµ(x)

=
1

πi

∫

X

f ∗(x)1{x:x0=i}(x) dµ(x)

=
1

πi

∫

{x:x0=i}
f ∗(x) dµ(x)

which is finite since f ∗ is integrable. Hence qij exists. ¤

Exercise 2.2.1 Show that the matrix Q has the following properties:
(a) Q is stochastic.
(b) Q = QP = PQ = Q2.
(c) πQ = π.

We now give a characterization for the ergodicity of T . Recall that the
matrix P is said to be irreducible if for every i, j ∈ {0, 1, . . . N − 1}, there

exists n ≥ 1 such that p
(n)
ij > 0.

Theorem 2.2.1 The following are equivalent,

(i) T is ergodic.

(ii) All rows of Q are identical.

(iii) qij > 0 for all i, j.

(iv) P is irreducible.

(v) 1 is a simple eigenvalue of P .

Proof
(i) ⇒ (ii) By the ergodic theorem for each i, j,

lim
n→∞

1

n

n−1∑

k=0

1{x:x0=i,xk=j}(x) = 1{x:x0=i}(x)πj.
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By the dominated convergence theorem,

lim
n→∞

1

n

n−1∑

k=0

µ({x ∈ X : x0 = i, xk = j}) = πiπj.

Hence,

qij =
1

πi

lim
n→∞

1

n

n−1∑

k=0

µ({x ∈ X : x0 = i, xk = j}) = πj,

i.e., qij is independent of i. Therefore, all rows of Q are identical.

(ii) ⇒ (iii) If al the rows of Q are identical, then all the columns of Q are
constants. Thus, for each j there exists a constant cj such that qij = cj for
all i. Since πQ = π, it follows that qij = cj = πj > 0 for all i, j.

(iii) ⇒ (iv) For any i, j

lim
n→∞

1

n

n−1∑

k=0

p
(k)
ij = qij > 0.

Hence, there exists n such that p
(n)
ij > 0, therefore P is irreducible.

(iv) ⇒ (iii) Suppose P is irreducible. For any state i ∈ {0, 1, . . . , N − 1}, let
Si = {j : qij > 0}. Since Q is a stochastic matrix, it follows that Si 6= ∅. Let
l ∈ Si, then qil > 0. Since Q = QP = QP n for all n, then for any state j

qij =
N−1∑
m=0

qimp
(n)
mj ≥ qilp

(n)
lj

for any n. Since P is irreducible, there exists n such that p
(n)
lj > 0. Hence,

qij > 0 for all i, j.

(iii) ⇒ (ii) Suppose qij > 0 for all j = 0, 1, . . . , N − 1. Fix any state j, and
let qj = max0≤i≤N−1 qij. Suppose that not all the qij’s are the same. Then
there exists k ∈ {0, 1, . . . , N − 1} such that qkj < qj. Since Q is stochastic
and Q2 = Q, then for any i ∈ {0, 1, . . . , N − 1} we have,

qij =
N−1∑

l=0

qilqlj <

N−1∑

l=0

qilqj = qj.
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This implies that qj = max0≤i≤N−1 qij < qj, a contradiction. Hence, the
columns of Q are constants, or all the rows are identical.

(ii) ⇒ (i) Suppose all the rows of Q are identical. We have shown above
that this implies qij = πj for all i, j ∈ {0, 1, . . . , N − 1}. Hence πj =

limn→∞ 1
n

∑n−1
k=0 p

(k)
ij .

Let

A = {x : xr = i0, . . . , xr+l = il}, and B = {x : xs = j0, . . . , xs+m = jm}

be any two cylinder sets of X. By Proposition 2.1.1 in Section 2, we must
show that

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B).

Since T is the left shift, for all n sufficiently large, the cylinders T−nA and
B depend on different coordinates. Hence, for n sufficiently large,

µ(T−nA ∩B) = πj0pj0j1 . . . pjm−1jmp
(n+r−s−m)
jmi0

pi0i1 . . . pil−1il .

Thus,

lim
n→∞

1

n

n−1∑

k=0

µ(T−kA ∩B)

= πj0pj0j1 . . . pjm−1jmpi0i1 . . . pil−1il lim
n→∞

1

n

n−1∑

k=0

p
(k)
jmi0

= (πj0pj0j1 . . . pjm−1jm)(πi0pi0i1 . . . pil−1il)

= µ(B)µ(A).

Therefore, T is ergodic.

(ii) ⇒ (v) If all the rows of Q are identical, then qij = πj for all i, j. If

vP = v, then vQ = v. This implies that for all j, vj = (
∑N−1

i=0 vi)πj. Thus,
v is a multiple of π. Therefore, 1 is a simple eigenvalue.

(v)⇒ (ii) Suppose 1 is a simple eigenvalue. For any i, let q∗i = (qi0, . . . , qi(N−1))
denote the ith row of Q then, q∗i is a probability vector. From Q = QP , we get
q∗i = q∗i P . By hypothesis π is the only probability vector satisfying πP = P ,
hence π = q∗i , and all the rows of Q are identical. ¤
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2.3 Mixing

As a corollary to the ergodic theorem we found a new definition of ergodicity;
namely, asymptotic average independence. Based on the same idea, we now
define other notions of weak independence that are stronger than ergodicity.

Definition 2.3.1 Let (X,F , µ) be a probability space, and T : X → X a
measure preserving transformation. Then,

(i) T is weakly mixing if for all A,B ∈ F , one has

lim
n→∞

1

n

n−1∑
i=0

∣∣µ(T−iA ∩B)− µ(A)µ(B)
∣∣ = 0. (2.3)

(ii) T is strongly mixing if for all A,B ∈ F , one has

lim
n→∞

µ(T−iA ∩B) = µ(A)µ(B). (2.4)

Notice that strongly mixing implies weakly mixing, and weakly mixing im-
plies ergodicity. This follows from the simple fact that if {an} is a sequence

of real numbers such that limn→∞ an = 0, then limn→∞
1

n

n−1∑
i=0

|ai| = 0, and

hence limn→∞
1

n

n−1∑
i=0

ai = 0. Furthermore, if {an} is a bounded sequence,

then the following are equivalent:

(i) limn→∞
1

n

n−1∑
i=0

|ai| = 0

(ii) limn→∞
1

n

n−1∑
i=0

|ai|2 = 0

(iii) there exists a subset J of the integers of density zero, i.e.

lim
n→∞

1

n
# ({0, 1, . . . , n− 1} ∩ J) = 0,

such that limn→∞,n/∈J an = 0.
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Using this one can give three equivalent characterizations of weakly mixing
transformations, can you state them?

Exercise 2.3.1 Let (X,F , µ) be a probability space, and T : X → X a
measure preserving transformation. Let S be a generating semi-algebra of
F .

(a) Show that if equation (2.3) holds for all A,B ∈ S, then T is weakly
mixing.

(b) Show that if equation (2.4) holds for all A,B ∈ S, then T is strongly
mixing.

Exercise 2.3.2 Consider the one or two-sided Bernoulli shift T as given in
Example (e) in subsection 1.3, and Example (2) in subsection 1.8. Show that
T is strongly mixing.

Exercise 2.3.3 Let (X,F , µ) be a probability space, and T : X → X a
measure preserving transformation. Consider the transformation T × T de-
fined on (X ×X,F × F , µ× µ) by T × T (x, y) = (Tx, Ty).

(a) Show that T × T is measure preserving with respect to µ× µ.

(b) Show that T × T is ergodic, if and only if T is weakly mixing.



Chapter 3

Measure Preserving
Isomorphisms and Factor Maps

3.1 Measure Preserving Isomorphisms

Given a measure preserving transformation T on a probability space (X,F , µ),
we call the quadruple (X,F , µ, T ) a dynamical system . Now, given two dy-
namical systems (X,F , µ, T ) and (Y, C, ν, S), what should we mean by: these
systems are the same? On each space there are two important structures:

(1) The measure structure given by the σ-algebra and the probability mea-
sure. Note, that in this context, sets of measure zero can be ignored.

(2) The dynamical structure, given by a measure preserving transforma-
tion.

So our notion of being the same must mean that we have a map

ψ : (X,F , µ, T ) → (Y, C, ν, S)

satisfying

(i) ψ is one-to-one and onto a.e. By this we mean, that if we remove a
(suitable) set NX of measure 0 in X, and a (suitable) set NY of measure
0 in Y , the map ψ : X \NX → Y \NY is a bijection.

(ii) ψ is measurable, i.e., ψ−1(C) ∈ F , for all C ∈ C.
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(iii) ψ preserves the measures: ν = µ ◦ ψ−1, i.e., ν(C) = µ (ψ−1(C)) for all
C ∈ C.

Finally, we should have that

(iv) ψ preserves the dynamics of T and S, i.e., ψ ◦ T = S ◦ψ, which is the
same as saying that the following diagram commutes.

................................................................................................................................. ................

.........................................................................................................................

........

........

........

.........................................................................................................................

........

........

........

................................................................................................................................. ................N N

N ′ N ′S

T

ψ ψ

This means that T -orbits are mapped to S-orbits:

x → Tx → T 2x → · · · → T nx →
↓ ↓ ↓ ↓ ↓

ψ(x) → S (ψ(x)) → S2 (ψ(x)) → · · · → Sn (ψ(x)) →

Definition 3.1.1 Two dynamical systems (X,F , µ, T ) and (Y, C, ν, S) are
isomorphic if there exist measurable sets N ⊂ X and M ⊂ Y with µ(X\N) =
ν(Y \ M) = 0 and T (N) ⊂ N, S(M) ⊂ M , and finally if there exists a
measurable map ψ : N → M such that (i)–(iv) are satisfied.

Exercise 3.1.1 Suppose (X,F , µ, T ) and (Y, C, ν, S) are two isomorphic dy-
namical systems. Show that

(a) T is ergodic if and only if S is ergodic.

(b) T is weakly mixing if and only if S is weakly mixing.

(c) T is strongly mixing if and only if S is strongly mixing.

Examples

(1) Let K = {z ∈ C : |z| = 1} be equipped with the Borel σ-algebra B on
K, and Haar measure (i.e., normalized Lebeque measure on the unit circle).
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Define S : K → K by Sz = z2; equivalently Se2πiθ = e2πi(2θ).. One can
easily check that S is measure preserving. In fact, the map S is isomorphic
to the map T on ([0, 1),B, λ) given by Tx = 2x (mod 1) (see Example
(b) in subsection 1.3, and Example (3) in subsection 1.8). Define a map
φ : [0, 1) → K by φ(x) = e2πix. We leave it to the reader to check that φ
is a measurable isomorphism, i.e., φ is a measurable and measure preserving
bijection such that Sφ(x) = φ(Tx) for all x ∈ [0, 1).

(2) Consider ([0, 1),B, λ), the unit interval with the Lebesgue σ-algebra, and
Lebesgue measure. Let T : [0, 1) → [0, 1) be given by Tx = Nx − bNxc.
Iterations of T generate the N -adic expansion of points in the unit interval.
Let Y := {0, 1, . . . , N − 1}N, the set of all sequences (yn)n≥1, with yn ∈
{0, 1, . . . , N − 1} for n ≥ 1. We now construct an isomorphism between
([0, 1),B, λ, T ) and (Y,F , µ, S), where F is the σ-algebra generated by the
cylinders, and µ the uniform product measure defined on cylinders by

µ({(yi)i≥1 ∈ Y : y1 = a1, y2 = a2, . . . , yn = an}) =
1

Nn
,

for any (a1, a2, a3, . . .) ∈ Y , and where S is the left shift.
Define ψ : [0, 1) → Y = {0, 1, . . . , N − 1}N by

ψ : x =
∞∑

k=1

ak

Nk
7→ (ak)k≥1 ,

where
∑∞

k=1 ak/N
k is the N -adic expansion of x (for example if N = 2 we

get the binary expansion, and if N = 10 we get the decimal expansion). Let

C(i1, . . . , in) = {(yi)i≥1 ∈ Y : y1 = i1, . . . , yn = in} .

In order to see that ψ is an isomorphism one needs to verify measurability
and measure preservingness on cylinders:

ψ−1 (C(i1, . . . , in)) =
[ i1
N

+
i2
N2

+ · · ·+ in
Nn

,
i1
N

+
i2
N2

+ · · ·+ in + 1

Nn

)

and

λ
(
ψ−1(C(i1, . . . , in))

)
=

1

Nn
= µ (C(i1, . . . , in))) .

Note that

N = {(yi)i≥1 ∈ Y : there exists a k ≥ 1 such that yi = N−1 for all i ≥ k}
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is a subset of Y of measure 0. Setting Ỹ = Y \ N , then ψ : [0, 1) → Ỹ is a
bijection, since every x ∈ [0, 1) has a unique N -adic expansion generated
by T . Finally, it is easy to see that ψ ◦ T = S ◦ ψ.

Exercise 3.1.2 Consider ([0, 1)2,B × B, λ× λ), where B×B is the product
Lebesgue σ-algebra, and λ × λ is the product Lebesgue measure Let T :
[0, 1)2 → [0, 1)2 be given by

T (x, y) =





(2x,
1

2
y), 0 ≤ x < 1

2

(2x− 1,
1

2
(y + 1)), 1

2
≤ x < 1.

Show that T is isomorphic to the two-sided Bernoulli shift S on
({0, 1}Z,F , µ

)
,

where F is the σ-algebra generated by cylinders of the form

∆ = {x−k = a−k, . . . , x` = a` : ai ∈ {0, 1}, i = −k, . . . , `}, k, ` ≥ 0,

and µ the product measure with weights (1
2
, 1

2
) (so µ(∆) = (1

2
)k+`+1).

Exercise 3.1.3 Let G =
1 +

√
5

2
, so that G2 = G + 1. Consider the set

X = [0,
1

G
)× [0, 1)

⋃
[
1

G
, 1)× [0,

1

G
),

endowed with the product Borel σ-algebra. Define the transformation

T (x, y) =





(Gx,
y

G
), (x, y) ∈ [0, 1

G
)× [0, 1]

(Gx− 1,
1 + y

G
), (x, y) ∈ [ 1

G
, 1)× [0, 1

G
).

(a) Show that T is measure preserving with respect to normalized Lebesgue
measure on X.

(b) Now let S : [0, 1)× [0, 1) → [0, 1)× [0, 1) be given by

S(x, y) =





(Gx,
y

G
), (x, y) ∈ [0, 1

G
)× [0, 1]

(G2x−G,
G + y

G2
), (x, y) ∈ [ 1

G
, 1)× [0, 1).
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Show that S is measure preserving with respect to normalized Lebesgue
measure on [0, 1)× [0, 1).

(c) Let Y = [0, 1) × [0, 1
G

), and let U be the induced transformation of T
on Y , i.e., for (x, y) ∈ Y , U(x, y) = T n(x,y), where n(x, y) = inf{n ≥
1 : T n(x, y) ∈ Y }. Show that the map φ : [0, 1)× [0, 1) → Y given by

φ(x, y) = (x,
y

G
)

defines an isomorphism from S to U , where Y has the induced measure
structure (see Section 1.5).

3.2 Factor Maps

In the above section, we discussed the notion of isomorphism which describes
when two dynamical systems are considered the same. Now, we give a precise
definition of what it means for a dynamical system to be a subsystem of
another one.

Definition 3.2.1 Let (X,F , µ, T ) and (Y, C, ν, S) be two dynamical systems.
We say that S is a factor of T if there exist measurable sets M1 ∈ F and
M2 ∈ C, such that µ(M1) = ν(M2) = 1 and T (M1) ⊂ M1, S(M2) ⊂ M2,
and finally if there exists a measurable and measure preserving map ψ : M1 →
M2 which is surjective, and satisfies ψ(T (x)) = S(ψ(x)) for all x ∈ M1. We
call ψ a factor map.

Remark Notice that if ψ is a factor map, then G = ψ−1C is a T -invariant
sub-σ-algebra of F , since

T−1G = T−1ψ−1C = ψ−1S−1C ⊆ ψ−1C = G.

Examples Let T be the Baker’s transformation on ([0, 1)2,B × B, λ× λ),
given by

T (x, y) =





(2x, 1
2
y), 0 ≤ x < 1

2

(2x− 1, 1
2
(y + 1)), 1

2
≤ x < 1,
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and let S be the left shift on X = {0, 1}N with the σ-algebra F generated by
the cylinders, and the uniform product measure µ. Define ψ : [0, 1)× [0, 1) →
X by

ψ(x, y) = (a1, a2, . . .),

where x =
∑∞

n=1

an

2n
is the binary expansion of x. It is easy to check that ψ

is a factor map.

Exercise 3.2.1 Let T be the left shift on X = {0, 1, 2}N which is endowed
with the σ-algebra F , generated by the cylinder sets, and the uniform product
measure µ giving each symbol probability 1/3, i.e.,

µ ({x ∈ X : x1 = i1, x2 = i2, . . . , xn = in}) =
1

3n
,

where i1, i2, . . . , in ∈ {0, 1, 2}.
Let S be the left shift on Y = {0, 1}N which is endowed with the σ-algebra G,
generated by the cylinder sets, and the product measure ν giving the symbol
0 probability 1/3 and the symbol 1 probability 2/3, i.e.,

µ ({y ∈ Y : y1 = j1, y2 = j2, . . . , yn = jn}) = (
2

3
)j1+j2+...+jn(

1

3
)n−(j1+j2+...+jn),

where j1, j2, . . . , jn ∈ {0, 1}. Show that S is a factor of T .

Exercise 3.2.2 Show that a factor of an ergodic (weakly mixing/strongly
mixing) transformation is also ergodic (weakly mixing/strongly mixing).

3.3 Natural Extensions

Suppose (Y,G, ν, S) is a non-invertible measure-preserving dynamical system.
An invertible measure-preserving dynamical system (X,F , µ, T ) is called a
natural extension of (Y,G, ν, S) if S is a factor of T and the factor map ψ
satisfies ∨∞m=0T

mψ−1G = F , where

∞∨

k=0

T kψ−1G

is the smallest σ-algebra containing the σ-algebras T kψ−1G for all k ≥ 0.
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Example Let T on
({0, 1}Z,F , µ

)
be the two-sided Bernoulli shift, and S on({0, 1}N∪{0},G, ν

)
be the one-sided Bernoulli shift, both spaces are endowed

with the uniform product measure. Notice that T is invertible, while S is
not. Set X = {0, 1}Z, Y = {0, 1}N∪{0}, and define ψ : X → Y by

ψ (. . . , x−1, x0, x1, . . .) = (x0, x1, . . .) .

Then, ψ is a factor map. We claim that

∞∨

k=0

T kψ−1G = F .

To prove this, we show that
∨∞

k=0 T kψ−1G contains all cylinders generating
F .

Let ∆ = {x ∈ X : x−k = a−k, . . . , x` = a`} be an arbitrary cylinder in
F , and let D = {y ∈ Y : y0 = a−k, . . . , yk+` = a`} which is a cylinder in G.
Then,

ψ−1D = {x ∈ X : x0 = a−k, . . . , xk+` = a`} and T kψ−1D = ∆.

This shows that ∞∨

k=0

T kψ−1G = F .

Thus, T is the natural extension of S.
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Chapter 4

Entropy

4.1 Randomness and Information

Given a measure preserving transformation T on a probability space (X,F , µ),
we want to define a nonnegative quantity h(T ) which measures the average
uncertainty about where T moves the points of X. That is, the value of
h(T ) reflects the amount of ‘randomness’ generated by T . We want to define
h(T ) in such a way, that (i) the amount of information gained by an appli-
cation of T is proportional to the amount of uncertainty removed, and (ii)
that h(T ) is isomorphism invariant, so that isomorphic transformations have
equal entropy.

The connection between entropy (that is randomness, uncertainty) and
the transmission of information was first studied by Claude Shannon in 1948.
As a motivation let us look at the following simple example. Consider a source
(for example a ticker-tape) that produces a string of symbols · · · x−1x0x1 · · ·
from the alphabet {a1, a2, . . . , an}. Suppose that the probability of receiving
symbol ai at any given time is pi, and that each symbol is transmitted inde-
pendently of what has been transmitted earlier. Of course we must have here
that each pi ≥ 0 and that

∑
i pi = 1. In ergodic theory we view this process

as the dynamical system (X,F ,B, µ, T ), where X = {a1, a2, . . . , an}N, B the
σ-algebra generated by cylinder sets of the form

∆n(ai1 , ai2 , . . . , ain) := {x ∈ X : xi1 = ai1 , . . . , xin = ain}

µ the product measure assigning to each coordinate probability pi of seeing
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the symbol ai, and T the left shift. We define the entropy of this system by

H(p1, . . . , pn) = h(T ) := −
n∑

i=1

pi log2 pi . (4.1)

If we define log pi as the amount of uncertainty in transmitting the symbol ai,
then H is the average amount of information gained (or uncertainty removed)
per symbol (notice that H is in fact an expected value). To see why this is an
appropriate definition, notice that if the source is degenerate, that is, pi = 1
for some i (i.e., the source only transmits the symbol ai), then H = 0. In
this case we indeed have no randomness. Another reason to see why this
definition is appropriate, is that H is maximal if pi = 1

n
for all i, and this

agrees with the fact that the source is most random when all the symbols are
equiprobable. To see this maximum, consider the function f : [0, 1] → R+

defined by

f(t) =

{
0 if t = 0,

−t log2 t if 0 < t ≤ 1.

Then f is continuous and concave downward, and Jensen’s Inequality implies
that for any p1, . . . , pn with pi ≥ 0 and p1 + . . . + pn = 1,

1

n
H(p1, . . . , pn) =

1

n

n∑
i=1

f(pi) ≤ f(
1

n

n∑
i=1

pi) = f(
1

n
) =

1

n
log2 n ,

so H(p1, . . . , pn) ≤ log2 n for all probability vectors (p1, . . . , pn). But

H(
1

n
, . . . ,

1

n
) = log2 n,

so the maximum value is attained at ( 1
n
, . . . , 1

n
).

4.2 Definitions and Properties

So far H is defined as the average information per symbol. The above defini-
tion can be extended to define the information transmitted by the occurrence
of an event E as − log2 P (E). This definition has the property that the in-
formation transmitted by E ∩ F for independent events E and F is the sum
of the information transmitted by each one individually, i.e.,

− log2 P (E ∩ F ) = − log2 P (E)− log2 P (F ).
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The only function with this property is the logarithm function to any base.
We choose base 2 because information is usually measured in bits.

In the above example of the ticker-tape the symbols were transmitted
independently. In general, the symbol generated might depend on what has
been received before. In fact these dependencies are often ‘built-in’ to be
able to check the transmitted sequence of symbols on errors (think here of
the Morse sequence, sequences on compact discs etc.). Such dependencies
must be taken into consideration in the calculation of the average information
per symbol. This can be achieved if one replaces the symbols ai by blocks of
symbols of particular size. More precisely, for every n, let Cn be the collection
of all possible n-blocks (or cylinder sets) of length n, and define

Hn := −
∑
C∈Cn

P (C) log P (C) .

Then 1
n
Hn can be seen as the average information per symbol when a block

of length n is transmitted. The entropy of the source is now defined by

h := lim
n→∞

Hn

n
. (4.2)

The existence of the limit in (4.2) follows from the fact that Hn is a subadditive
sequence, i.e., Hn+m ≤ Hn + Hm, and proposition (4.2.2) (see proposition
(4.2.3) below).

Now replace the source by a measure preserving system (X,B, µ, T ).
How can one define the entropy of this system similar to the case of a
source? The symbols {a1, a2, . . . , an} can now be viewed as a partition
A = {A1, A2, . . . , An} of X, so that X is the disjoint union (up to sets
of measure zero) of A1, A2, . . . , An. The source can be seen as follows: with
each point x ∈ X, we associate an infinite sequence · · · x−1, x0, x1, · · · , where
xi is aj if and only if T ix ∈ Aj. We define the entropy of the partition α by

H(α) = Hµ(α) := −
n∑

i=1

µ(Ai) log µ(Ai) .

Our aim is to define the entropy of the transformation T which is independent
of the partition we choose. In fact h(T ) must be the maximal entropy over
all possible finite partitions. But first we need few facts about partitions.
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Exercise 4.2.1 Let α = {A1, . . . , An} and β = {B1, . . . , Bm} be two parti-
tions of X. Show that

T−1α := {T−1A1, . . . , T
−1An}

and
α ∨ β := {Ai ∩Bj : Ai ∈ α, Bj ∈ β}

are both partitions of X.

The members of a partition are called the atoms of the partition. We say
that the partition β = {B1, . . . , Bm} is a refinement of the partition α =
{A1, . . . , An}, and write α ≤ β, if for every 1 ≤ j ≤ m there exists an
1 ≤ i ≤ n such that Bj ⊂ Ai (up to sets of measure zero). The partition
α ∨ β is called the common refinement of α and β.

Exercise 4.2.2 Show that if β is a refinement of α, each atom of α is a finite
(disjoint) union of atoms of β.

Given two partitions α = {A1, . . . An} and β = {B1, . . . , Bm} of X, we
define the conditional entropy of α given β by

H(α|β) := −
∑
A∈α

∑

B∈β

log

(
µ(A ∩B)

µ(B)

)
µ(A ∩B) .

(Under the convention that 0 log 0 := 0.)
The above quantity H(α|β) is interpreted as the average uncertainty

about which element of the partition α the point x will enter (under T )
if we already know which element of β the point x will enter.

Proposition 4.2.1 Let α, β and γ be partitions of X. Then,

(a) H(T−1α) = H(α) ;

(b) H(α ∨ β) = H(α) + H(β|α);

(c) H(β|α) ≤ H(β);

(d) H(α ∨ β) ≤ H(α) + H(β);

(e) If α ≤ β, then H(α) ≤ H(β);
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(f) H(α ∨ β|γ) = H(α|γ) + H(β|α ∨ γ);

(g) If β ≤ α, then H(γ|α) ≤ H(γ|β);

(h) If β ≤ α, then H(β|α) = 0.

(i) We call two partitions α and β independent if

µ(A ∩B) = µ(A)µ(B) for all A ∈ α, B ∈ β .

If α and β are independent partitions, one has that

H(α ∨ β) = H(α) + H(β) .

Proof We prove properties (b) and (c), the rest are left as an exercise.

H(α ∨ β) = −
∑
A∈α

∑

B∈β

µ(A ∩B) log µ(A ∩B)

= −
∑
A∈α

∑

B∈β

µ(A ∩B) log
µ(A ∩B)

µ(A)

+ −
∑
A∈α

∑

B∈β

µ(A ∩B) log µ(A)

= H(β|α) + H(α).

We now show that H(β|α) ≤ H(β). Recall that the function f(t) = −t log t
for 0 < t ≤ 1 is concave down. Thus,

H(β|α) = −
∑

B∈β

∑
A∈α

µ(A ∩B) log
µ(A ∩B)

µ(A)

= −
∑

B∈β

∑
A∈α

µ(A)
µ(A ∩B)

µ(A)
log

µ(A ∩B)

µ(A)

=
∑

B∈β

∑
A∈α

µ(A)f

(
µ(A ∩B)

µ(A)

)

≤
∑

B∈β

f

(∑
A∈α

µ(A)
µ(A ∩B)

µ(A)

)

=
∑

B∈β

f(µ(B)) = H(β).
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Exercise 4.2.3 Prove the rest of the properties of Proposition 4.2.1

Now consider the partition
∨n−1

i=0 T−iα, whose atoms are of the form Ai0∩
T−1Ai1 ∩ . . .∩T−(n−1)Ain−1 , consisting of all points x ∈ X with the property
that x ∈ Ai0 , Tx ∈ Ai1 , . . . , T n−1x ∈ Ain−1 .

Exercise 4.2.4 Show that if α is a finite partition of (X,F , µ, T ), then

H(
n−1∨
i=0

T−iα) = H(α) +
n−1∑
j=1

H(α|
j∨

i=1

T−iα).

To define the notion of the entropy of a transformation with respect to a
partition, we need the following two propositions.

Proposition 4.2.2 If {an} is a subadditive sequence of real numbers i.e.,
an+p ≤ an + ap for all n, p, then

lim
n→∞

an

n

exists.

Proof Fix any m > 0. For any n ≥ 0 one has n = km+ i for some i between
0 ≤ i ≤ m− 1. By subadditivity it follows that

an

n
=

akm+i

km + i
≤ akm

km
+

ai

km
≤ k

am

km
+

ai

km
.

Note that if n → ∞, k → ∞ and so lim supn→∞ an/n ≤ am/m. Since m is
arbitrary one has

lim sup
n→∞

an

n
≤ inf

am

m
≤ lim inf

n→∞
an

n
.

Therefore limn→∞ an/n exists, and equals inf an/n. ¤

Proposition 4.2.3 Let α be a finite partitions of (X,B, µ, T ), where T is a
measure preserving transformation. Then, limn→∞ 1

n
H(

∨n−1
i=0 T−iα) exists.
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Proof Let an = H(
∨n−1

i=0 T−iα) ≥ 0. Then, by Proposition 4.2.1, we have

an+p = H(

n+p−1∨
i=0

T−iα)

≤ H(
n−1∨
i=0

T−iα) + H(

n+p−1∨
i=n

T−iα)

= an + H(

p−1∨
i=0

T−iα)

= an + ap.

Hence, by Proposition 4.2.2

lim
n→∞

an

n
= lim

n→∞
1

n
H(

n−1∨
i=0

T−iα)

exists. ¤
We are now in position to give the definition of the entropy of the trans-

formation T .

Definition 4.2.1 The entropy of the measure preserving transformation T
with respect to the partition α is given by

h(α, T ) = hµ(α, T ) := lim
n→∞

1

n
H(

n−1∨
i=0

T−iα) ,

where

H(
n−1∨
i=0

T−iα) = −
∑

D∈Wn−1
i=0 T−iα

µ(D) log(µ(D)) .

Finally, the entropy of the transformation T is given by

h(T ) = hµ(T ) := sup
α

h(α, T ) .

The following theorem gives an equivalent definition of entropy..



62 Entropy

Theorem 4.2.1 The entropy of the measure preserving transformation T
with respect to the partition α is also given by

h(α, T ) = lim
n→∞

H(α|
n−1∨
i=1

T−iα) .

Proof Notice that the sequence {H(α|∨n
i=1 T−iα) is bounded from below,

and is non-increasing, hence limn→∞ H(α|∨n
i=1 T−iα) exists. Furthermore,

lim
n→∞

H(α|
n∨

i=1

T−iα) = lim
n→∞

1

n

n∑
j=1

H(α|
j∨

i=1

T−iα).

From exercise 4.2.4, we have

H(
n−1∨
i=0

T−iα) = H(α) +
n−1∑
j=1

H(α|
j∨

i=1

T−iα).

Now, dividing by n, and taking the limit as n → ∞, one gets the desired
result ¤

Theorem 4.2.2 Entropy is an isomorphism invariant.

Proof Let (X,B, µ, T ) and (Y, C, ν, S) be two isomorphic measure preserv-
ing systems (see Definition 1.2.3, for a definition), with ψ : X → Y the
corresponding isomorphism. We need to show that hµ(T ) = hν(S).

Let β = {B1, . . . , Bn} be any partition of Y , then ψ−1β = {ψ−1B1, . . . , ψ
−1Bn}

is a partition of X. Set Ai = ψ−1Bi, for 1 ≤ i ≤ n. Since ψ : X → Y is an
isomorphism, we have that ν = µψ−1 and ψT = Sψ, so that for any n ≥ 0
and Bi0 , . . . , Bin−1 ∈ β

ν
(
Bi0 ∩ S−1Bi1 ∩ . . . ∩ S−(n−1)Bin−1

)

= µ
(
ψ−1Bi0 ∩ ψ−1S−1Bi1 ∩ . . . ∩ ψ−1S−(n−1)Bin−1

)

= µ
(
ψ−1Bi0 ∩ T−1ψ−1Bi1 ∩ . . . ∩ T−(n−1)ψ−1Bin−1

)

= µ
(
Ai0 ∩ T−1Ai1 ∩ . . . ∩ T−(n−1)Ain−1

)
.

Setting

A(n) = Ai0 ∩ . . . ∩ T−(n−1)Ain−1 and B(n) = Bi0 ∩ . . . ∩ S−(n−1)Bin−1 ,
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we thus find that

hν(S) = sup
β

hν(β, S) = sup
β

lim
n→∞

1

n
Hν(

n−1∨
i=0

S−iβ)

= sup
β

lim
n→∞

− 1

n

∑

B(n)∈Wn−1
i=0 S−iβ

ν(B(n)) log ν(B(n))

= sup
ψ−1β

lim
n→∞

− 1

n

∑

A(n)∈Wn−1
i=0 T−iψ−1β

µ(A(n)) log µ(A(n))

= sup
ψ−1β

hµ(ψ−1β, T )

≤ sup
α

hµ(α, T ) = hµ(T ) ,

where in the last inequality the supremum is taken over all possible finite
partitions α of X. Thus hν(S) ≤ hµ(T ). The proof of hµ(T ) ≤ hν(S) is done
similarly. Therefore hν(S) = hµ(T ), and the proof is complete. ¤

4.3 Calculation of Entropy and Examples

Calculating the entropy of a transformation directly from the definition does
not seem feasible, for one needs to take the supremum over all finite parti-
tions, which is practically impossible. However, the entropy of a partition is
relatively easier to calculate if one has full information about the partition
under consideration. So the question is whether it is possible to find a par-
tition α of X where h(α, T ) = h(T ). Naturally, such a partition contains all
the information ‘transmitted’ by T . To answer this question we need some
notations and definitions.

For α = {A1, . . . , AN} and all m, n ≥ 0, let

σ

(
m∨

i=n

T−iα

)
and σ

( −n∨
i=−m

T−iα

)

be the smallest σ-algebras containing the partitions
∨m

i=n T−iα and
∨−n

i=−m T−iα

respectively. Furthermore, let σ
(∨−∞

i=−∞ T−iα
)

be the smallest σ-algebra con-

taining all the partitions
∨m

i=n T−iα and
∨−n

i=−m T−iα for all n and m. We

call a partition α a generator with respect to T if σ
(∨∞

i=−∞ T−iα
)

= F ,
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where F is the σ-algebra on X. If T is non-invertible, then α is said to be
a generator if σ (

∨∞
i=0 T−iα) = F . Naturally, this equality is modulo sets

of measure zero. One has also the following characterization of generators,
saying basically, that each measurable set in X can be approximated by a
finite disjoint union of cylinder sets. See also [W] for more details and proofs.

Proposition 4.3.1 The partition α is a generator of F if for each A ∈ F
and for each ε > 0 there exists a finite disjoint union C of elements of {αm

n },
such that µ(A4C) < ε.

We now state (without proofs) two famous theorems known as Kolmogorov-
Sinai’s Theorem and Krieger’s Generator Theorem. For the proofs, we refer
the interested reader to the book of Karl Petersen or Peter Walter.

Theorem 4.3.1 (Kolmogorov and Sinai, 1958) If α is a generator with re-
spect to T and H(α) < ∞, then h(T ) = h(α, T ).

Theorem 4.3.2 (Krieger, 1970) If T is an ergodic measure preserving trans-
formation with h(T ) < ∞, then T has a finite generator.

We will use these two theorems to calculate the entropy of a Bernoulli
shift.
Example (Entropy of a Bernoulli shift)–Let T be the left shift on X =
{1, 2, · · · , n}Z endowed with the σ-algebra F generated by the cylinder sets,
and product measure µ giving symbol i probability pi, where p1 + p2 + . . . +
pn = 1. Our aim is to calculate h(T ). To this end we need to find a partition
α which generates the σ-algebra F under the action of T . The natural choice
of α is what is known as the time-zero partition α = {A1, . . . , An}, where

Ai := {x ∈ X : x0 = i} , i = 1, . . . , n .

Notice that for all m ∈ Z,

T−mAi = {x ∈ X : xm = i} ,

and

Ai0 ∩ T−1Ai1 ∩ · · · ∩ T−mAim = {x ∈ X : x0 = i0, . . . , xm = im} .
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In other words,
∨m

i=0 T−iα is precisely the collection of cylinders of length
m (i.e., the collection of all m-blocks), and these by definition generate F .
Hence, α is a generating partition, so that

h(T ) = h(α, T ) = lim
m→∞

1

m
H

(
m−1∨
i=0

T−iα

)
.

First notice that − since µ is product measure here − the partitions

α, T−1α, · · · , T−(m−1)α

are all independent since each specifies a different coordinate, and so

H(α ∨ T−1α ∨ · · · ∨ T−(m−1)α)

= H(α) + H(T−1α) + · · ·+ H(T−(m−1)α)

= mH(α) = −m

n∑
i=1

pi log pi.

Thus,

h(T ) = lim
m→∞

1

m
(−m)

n∑
i=1

pi log pi = −
n∑

i=1

pi log pi .

Exercise 4.3.1 Let T be the left shift on X = {1, 2, · · · , n}Z endowed with
the σ-algebra F generated by the cylinder sets, and the Markov measure µ
given by the stochastic matrix P = (pij), and the probability vector π =
(π1, . . . , πn) with πP = π. Show that

h(T ) = −
n∑

j=1

n∑
i=1

πipij log pij

Exercise 4.3.2 Suppose (X1,B1, µ1, T1) and (X2,B2, µ2, T2) are two dynam-
ical systems. Show that

hµ1×µ2(T1 × T2) = hµ1(T1) + hµ2(T2).
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4.4 The Shannon-McMillan-Breiman Theorem

In the previous sections we have considered only finite partitions on X, how-
ever all the definitions and results hold if we were to consider countable par-
titions of finite entropy. Before we state and prove the Shannon-McMillan-
Breiman Theorem, we need to introduce the information function associated
with a partition.

Let (X,F , µ) be a probability space, and α = {A1, A2, . . .} be a finite or
a countable partition of X into measurable sets. For each x ∈ X, let α(x)
be the element of α to which x belongs. Then, the information function
associated to α is defined to be

Iα(x) = − log µ(α(x)) = −
∑
A∈α

1A(x) log µ(A).

For two finite or countable partitions α and β of X, we define the condi-
tional information function of α given β by

Iα|β(x) = −
∑

B∈β

∑
A∈α

1(A∩B)(x) log

(
µ(A ∩B)

µ(B)

)
.

We claim that

Iα|β(x) = − log Eµ(1α(x)|σ(β)) = −
∑
A∈α

1A(x) log E(1A|σ(β)), (4.3)

where σ(β) is the σ-algebra generated by the finite or countable partition β,
(see the remark following the proof of Theorem (2.1.1)). This follows from the
fact (which is easy to prove using the definition of conditional expectations)
that if β is finite or countable, then for any f ∈ L1(µ), one has

Eµ(f |σ(β)) =
∑

B∈β

1B
1

µ(B)

∫

B

fdµ.

Clearly, H(α|β) =
∫

X
Iα|β(x) dµ(x).

Exercise 4.4.1 Let α and β be finite or countable partitions of X. Show
that

Iα
W

β = Iα + Iβ|α.
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Now suppose T : X → X is a measure preserving transformation on
(X,F , µ), and let α = {A1, A2, . . .} be any countable partition. Then T−1 =
{T−1A1, T

−1A2, . . .} is also a countable partition. Since T is measure pre-
serving one has,

IT−1α(x) = −
∑
Ai∈α

1T−1Ai
(x) log µ(T−1Ai) = −

∑
Ai∈α

1Ai
(Tx) log µ(Ai) = Iα(Tx).

Furthermore,

lim
n→∞

1

n + 1
H(

n∨
i=0

T−iα) = lim
n→∞

1

n + 1

∫

X

IWn
i=0 T−iα(x) dµ(x) = h(α, T ).

The Shannon-McMillan-Breiman theorem says if T is ergodic and if α has

finite entropy, then in fact the integrand
1

n + 1
IWn

i=0 T−iα(x) converges a.e. to

h(α, T ). Notice that the integrand can be written as

1

n + 1
IWn

i=0 T−iα(x) = − 1

n + 1
log µ

(
(

n∨
i=0

T−iα)(x)

)
,

where (
∨n

i=0 T−iα)(x) is the element of
∨n

i=0 T−iα containing x (often referred
to as the α-cylinder of order n containing x). Before we proceed we need the
following proposition.

Proposition 4.4.1 Let α = {A1, A2, . . .} be a countable partition with finite
entropy. For each n = 1, 2, 3, . . ., let fn(x) = Iα|Wn

i=1 T−iα(x), and let f ∗ =
supn≥1 fn. Then, for each λ ≥ 0 and for each A ∈ α,

µ ({x ∈ A : f ∗(x) > λ}) ≤ 2−λ.

Furthermore, f ∗ ∈ L1(X,F , µ).

Proof Let t ≥ 0 and A ∈ α. For n ≥ 1, let

fA
n (x) = − log Eµ

(
1A|

n∨
i=1

T−iα

)
(x),

and
Bn = {x ∈ X : fA

1 (x) ≤ t, . . . , fA
n−1(x) ≤ t, fA

n (x) > t}.
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Notice that for x ∈ A one has fn(x) = fA
n (x), and for x ∈ Bn one has

Eµ (1A|
∨n

i=1 T−iα) (x) < 2−t. Since Bn ∈ σ (
∨n

i=1 T−iα), then

µ(Bn ∩ A) =

∫

Bn

1A(x) dµ(x)

=

∫

Bn

Eµ

(
1A|

n∨
i=1

T−iα

)
(x) dµ(x)

≤
∫

Bn

2−t dµ(x) = 2−tµ(Bn).

Thus,

µ ({x ∈ A : f ∗(x) > t}) = µ ({x ∈ A : fn(x) > t, for some n})
= µ

({x ∈ A : fA
n (x) > t, for some n})

= µ (∪∞n=1A ∩Bn)

=
∞∑

n=1

µ (A ∩Bn)

≤ 2−t

∞∑
n=1

µ(Bn) ≤ 2−t.

We now show that f ∗ ∈ L1(X,F , µ). First notice that

µ ({x ∈ A : f ∗(x) > t}) ≤ µ(A),

hence,

µ ({x ∈ A : f ∗(x) > t}) ≤ min(µ(A), 2−t).
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Using Fubini’s Theorem, and the fact that f ∗ ≥ 0 one has
∫

X

f ∗(x) dµ(x) =

∫ ∞

0

µ ({x ∈ X : f ∗(x) > t}) dt

=

∫ ∞

0

∑
A∈α

µ ({x ∈ A : f ∗(x) > t}) dt

=
∑
A∈α

∫ ∞

0

µ ({x ∈ A : f ∗(x) > t}) dt

≤
∑
A∈α

∫ ∞

0

min(µ(A), 2−t) dt

=
∑
A∈α

∫ − log µ(A)

0

µ(A) dt +
∑
A∈α

∫ ∞

− log µ(A)

2−t dt

= −
∑
A∈α

µ(A) log µ(A) +
∑
A∈α

µ(A)

loge 2

= Hµ(α) +
1

loge 2
< ∞.

¤
So far we have defined the notion of the conditional entropy Iα|β when α

and β are countable partitions. We can generalize the definition to the case
α is a countable partition and G is a σ-algebra as follows (see equation (4.3)),

Iα|G(x) = − log Eµ(1α(x)|G).

If we denote by
∨∞

i=1 T−iα = σ(∪n

∨n
i=1 T−iα), then

Iα|W∞i=1 T−iα(x) = lim
n→∞

Iα|Wn
i=1 T−iα(x). (4.4)

Exercise 4.4.2 Give a proof of equation (4.4) using the following important
theorem, known as the Martingale Convergence Theorem (and is stated to
our setting)

Theorem 4.4.1 (Martingale Convergence Theorem) Let C1 ⊆ C2 ⊆ · · · be a
sequence of increasing σalgebras, and let C = σ(∪nCn). If f ∈ L1(µ), then

Eµ(f |C) = lim
n→∞

Eµ(f |Cn)

µ a.e. and in L1(µ).
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Exercise 4.4.3 Show that if T is measure preserving on the probability
space (X,F , µ) and f ∈ L1(µ), then

lim
n→∞

f(T nx)

n
= 0, µ a.e.

Theorem 4.4.2 (The Shannon-McMillan-Breiman Theorem) Suppose T is
an ergodic measure preserving transformation on a probability space (X,F , µ),
and let α be a countable partition with H(α) < ∞. Then,

lim
n→∞

1

n + 1
IWn

i=0 T−iα(x) = h(α, T ) a.e.

Proof For each n = 1, 2, 3, . . ., let fn(x) = Iα|Wn
i=1 T−iα(x). Then,

IWn
i=0 T−iα(x) = IWn

i=1 T−iα(x) + Iα|Wn
i=1 T−iα(x)

= IWn−1
i=0 T−iα(Tx) + fn(x)

= IWn−1
i=1 T−iα(Tx) + Iα|Wn−1

i=1 T−iα(Tx) + fn(x)

= IWn−2
i=0 T−iα(T 2x) + fn−1(Tx) + fn(x)

...

= Iα(T nx) + f1(T
n−1x) + . . . + fn−1(Tx) + fn(x).

Let f(x) = Iα|W∞i=1 T−iα(x) = limn→∞ fn(x). Notice that f ∈ L1(X,F , µ)
since

∫
X

f(x) dµ(x) = h(α, T ). Now letting f0 = Iα, we have

1

n + 1
IWn

i=0 T−iα(x) =
1

n + 1

n∑

k=0

fn−k(T
kx)

=
1

n + 1

n∑

k=0

f(T kx) +
1

n + 1

n∑

k=0

(fn−k − f)(T kx).

By the ergodic theorem,

lim
n→∞

n∑

k=0

f(T kx) =

∫

X

f(x) dµ(x) = h(α, T ) a.e.
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We now study the sequence { 1

n + 1

n∑

k=0

(fn−k − f)(T kx)}. Let

FN = sup
k≥N

|fk − f |, and f ∗ = sup
n≥1

fn.

Notice that 0 ≤ FN ≤ f ∗+f , hence FN ∈ L1(X,F , µ) and limN→∞ FN(x) = 0
a.e. Also for any k, |fn−k− f | ≤ f ∗+ f , so that |fn−k− f | ∈ L1(X,F , µ) and
lim n →∞|fn−k − f | = 0 a.e.
For any N ≤ n,

1

n + 1

n∑

k=0

|fn−k − f |(T kx) =
1

n + 1

n−N∑

k=0

|fn−k − f |(T kx)

+
1

n + 1

n∑

k=n−N+1

|fn−k − f |(T kx)

≤ 1

n + 1

n−N∑

k=0

FN(T kx)

+
1

n + 1

N−1∑

k=0

|fk − f |(T n−kx).

If we take the limit as n →∞, then by exercise (4.4.3) the second term tends
to 0 a.e., and by the ergodic theorem as well as the dominated convergence
theorem, the first term tends to zero a.e. Hence,

lim
n→∞

1

n + 1
IWn

i=0 T−iα(x) = h(α, T ) a.e.

¤
The above theorem can be interpreted as providing an estimate of the size
of the atoms of

∨n
i=0 T−iα. For n sufficiently large, a typical element A ∈∨n

i=0 T−iα satisfies

− 1

n + 1
log µ(A) ≈ h(α, T )

or
µ(An) ≈ 2−(n+1)h(α,T ).

Furthermore, if α is a generating partition (i.e.
∨∞

i=0 T−iα = F , then in the
conclusion of Shannon-McMillan-Breiman Theorem one can replace h(α, T )
by h(T ).
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4.5 Lochs’ Theorem

In 1964, G. Lochs compared the decimal and the continued fraction expan-
sions. Let x ∈ [0, 1) be an irrational number, and suppose x = .d1d2 · · · is the
decimal expansion of x (which is generated by iterating the map Sx = 10x
(mod 1)). Suppose further that

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

= [0; a1, a2, · · · ] (4.5)

is its regular continued fraction (RCF) expansion (generated by the map
Tx = 1

x
− b 1

x
c). Let y = .d1d2 · · · dn be the rational number determined by

the first n decimal digits of x, and let z = y + 10−n. Then, [y, z) is the
decimal cylinder of order n containing x, which we also denote by Bn(x).
Now let

y =
1

b1 +
1

b2 +
.. . +

1

bl

and

z =
1

c1 +
1

c2 +
.. . +

1

ck

be the continued fraction expansion of y and z. Let

m (n, x) = max {i ≤ min (l, k) : for all j ≤ i, bj = cj} . (4.6)

In other words, if Bn(x) denotes the decimal cylinder consisting of all points
y in [0, 1) such that the first n decimal digits of y agree with those of x,
and if Cj(x) denotes the continued fraction cylinder of order j containing
x, i.e., Cj(x) is the set of all points in [0, 1) such that the first j digits in
their continued fraction expansion is the same as that of x, then m(n, x) is
the largest integer such that Bn(x) ⊂ Cm(n,x)(x). Lochs proved the following
theorem:
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Theorem 4.5.1 Let λ denote Lebesgue measure on [0, 1). Then for a.e.
x ∈ [0, 1)

lim
n→∞

m(n, x)

n
=

6 log 2 log 10

π2
.

In this section, we will prove a generalization of Lochs’ theorem that
allows one to compare any two known expansions of numbers. We show that
Lochs’ theorem is true for any two sequences of interval partitions on [0, 1)
satisfying the conclusion of Shannon-McMillan-Breiman theorem. We begin
with few definitions that will be used in the arguments to follow.

Definition 4.5.1 By an interval partition we mean a finite or countable
partition of [0, 1) into subintervals. If P is an interval partition and x ∈ [0, 1),
we let P (x) denote the interval of P containing x.

Let P = {Pn}∞n=1 be a sequence of interval partitions. Let λ denote
Lebesgue probability measure on [0, 1).

Definition 4.5.2 Let c ≥ 0. We say that P has entropy c a.e. with respect
to λ if

− log λ (Pn (x))

n
→ c a.e.

Note that we do not assume that each Pn is refined by Pn+1.
Suppose that P = {Pn}∞n=1 and Q = {Qn}∞n=1 are sequences of interval

partitions. For each n ∈ N and x ∈ [0, 1), define

mP,Q (n, x) = sup {m | Pn (x) ⊂ Qm (x)} .

Theorem 4.5.2 Let P = {Pn}∞n=1 and Q = {Qn}∞n=1 be sequences of interval
partitions and λ Lebesgue probability measure on [0, 1). Suppose that for some
constants c > 0 and d > 0, P has entropy c a.e with respect to λ and Q has
entropy d a.e. with respect to λ. Then

mP,Q (n, x)

n
→ c

d
a.e.

Proof First we show that

lim supn→∞
mP,Q (n, x)

n
≤ c

d
a.e.



74 Entropy

Fix ε > 0. Let x ∈ [0, 1) be a point at which the convergence conditions of

the hypotheses are met. Fix η > 0 so that
c + η

c− c

d
η

< 1 + ε. Choose N so

that for all n ≥ N
λ (Pn (x)) > 2−n(c+η)

and
λ (Qn (x)) < 2−n(d−η).

Fix n so that min
{

n,
c

d
n
}
≥ N , and let m′ denote any integer greater than

(1 + ε)
c

d
n. By the choice of η,

λ (Pn (x)) > λ (Qm′ (x))

so that Pn (x) is not contained in Qm′ (x). Therefore

mP,Q (n, x) ≤ (1 + ε)
c

d
n

and so

lim supn→∞
mP,Q (n, x)

n
≤ (1 + ε)

c

d
a.e.

Since ε > 0 was arbitrary, we have the desired result.
Now we show that

lim infn→∞
mP,Q (n, x)

n
≥ c

d
a.e.

Fix ε ∈ (0, 1). Choose η > 0 so that ζ =: εc − η
(
1 + (1− ε)

c

d

)
> 0. For

each n ∈ N let m̄ (n) =
⌊
(1− ε)

c

d
n
⌋
. For brevity, for each n ∈ N we call an

element of Pn (respectively Qn) (n, η)−good if

λ (Pn (x)) < 2−n(c−η)

(respectively
λ (Qn (x)) > 2−n(d+η).)

For each n ∈ N, let

Dn (η) =

{
x :

Pn (x) is (n, η)− good and Qm̄(n) (x) is (m̄ (n) , η)− good
and Pn (x) " Qm̄(n) (x)

}
.
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If x ∈ Dn (η), then Pn (x) contains an endpoint of the (m̄ (n) , η)−good
interval Qm̄(n) (x). By the definition of Dn (η) and m̄ (n),

λ (Pn (x))

λ
(
Qm̄(n) (x)

) < 2−nζ .

Since no more than one atom of Pn can contain a particular endpoint of an
atom of Qm̄(n), we see that λ (Dn (η)) < 2 · 2−nζ and so

∞∑
n=1

λ (Dn (η)) < ∞,

which implies that
λ {x | x ∈ Dn (η) i.o.} = 0.

Since m̄ (n) goes to infinity as n does, we have shown that for almost every
x ∈ [0, 1), there exists N ∈ N, so that for all n ≥ N , Pn (x) is (n, η)−good
and Qm̄(n) (x) is (m̄ (n) , η)−good and x /∈ Dn (η). In other words, for al-
most every x ∈ [0, 1), there exists N ∈ N, so that for all n ≥ N , Pn (x)
is (n, η)−good and Qm̄(n) (x) is (m̄ (n) , η)−good and Pn (x) ⊂ Qm̄(n) (x).
Thus, for almost every x ∈ [0, 1), there exists N ∈ N, so that for all n ≥ N ,
mP,Q (n, x) ≥ m̄ (n), so that

mP,Q (n, x)

n
≥ b(1− ε)

c

d
c.

This proves that

lim infn→∞
mP,Q (n, x)

n
≥ (1− ε)

c

d
a.e.

Since ε > 0 was arbitrary, we have established the theorem. ¤

The above result allows us to compare any two well-known expansions
of numbers. Since the commonly used expansions are usually performed for
points in the unit interval, our underlying space will be ([0, 1),B, λ), where
B is the Lebesgue σ-algebra, and λ the Lebesgue measure. The expansions
we have in mind share the following two properties.

Definition 4.5.3 A surjective map T : [0, 1) → [0, 1) is called a number
theoretic fibered map (NTFM) if it satisfies the following conditions:
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(a) there exists a finite or countable partition of intervals α = {Ai; i ∈ D}
such that T restricted to each atom of α (cylinder set of order 0) is
monotone, continuous and injective. Furthermore, α is a generating
partition.

(b) T is ergodic with respect to Lebesgue measure λ, and there exists a T
invariant probability measure µ equivalent to λ with bounded density.

(Both
dµ

dλ
and

dλ

dµ
are bounded, and µ(A) = 0 if and only if λ(A) = 0

for all Lebesgue sets A.).

Let T be an NTFM with corresponding partition α, and T -invariant measure
µ equivalent to λ. Let L,M > 0 be such that

Lλ(A) ≤ µ(A) < Mλ(A)

for all Lebesgue sets A (property (b)). For n ≥ 1, let Pn =
∨n−1

i=0 T−iα, then
by property (a), Pn is an interval partition. If Hµ(α) < ∞, then Shannon-
McMillan-Breiman Theorem gives

lim
n→∞

− log µ(Pn(x))

n
= hµ(T ) a.e. with respect to µ.

Exercise 4.5.1 Show that the conclusion of the Shannon-McMillan-Breiman
Theorem holds if we replace µ by λ, i.e.

lim
n→∞

− log λ(Pn(x))

n
= hµ(T ) a.e. with respect to λ.

Iterations of T generate expansions of points x ∈ [0, 1) with digits in D.
We refer to the resulting expansion as the T -expansion of x.

Almost all known expansions on [0, 1) are generated by a NTFM. Among
them are the n-adic expansions (Tx = nx (mod 1), where n is a positive
integer), β expansions (Tx = βx (mod 1), where β > 1 is a real number),
continued fraction expansions (Tx = 1

x
− b 1

x
c), and many others (see the

book Ergodic Theory of Numbers).

Exercise 4.5.2 Prove Theorem (4.5.1) using Theorem (4.5.2). Use the fact
that the continued fraction map T is ergodic with respect to Gauss measure
µ, given by

µ(B) =

∫

B

1

log 2

1

1 + x
dx,
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and has entropy equal to hµ(T ) =
π2

6 log 2
.

Exercise 4.5.3 Reformulate and prove Lochs’ Theorem for any two NTFM
maps S and T on [0, 1).



78 Entropy



Chapter 5

Invariant Measures for
Continuous Transformations

5.1 Existence

Suppose X is a compact metric space, and let B be the Borel σ-algebra i.e.,
the σ-algebra generated by the open sets. Let M(X) be the collection of all
Borel probability measures on X. There is natural embedding of the space
X in M(X) via the map x → δx, where δX is the Dirac measure concentrated
at x (δx(A) = 1 if x ∈ A, and is zero otherwise). Furthermore, M(X) is a
convex set, i.e., pµ+(1−p)ν ∈ M(X) whenever µ, ν ∈ M(X) and 0 ≤ p ≤ 1.
Theorem 5.1.2 below shows that a member of M(X) is determined by how
it integrates continuous functions. We denote by C(X) the Banach space of
all complex valued continuous functions on X under the supremum norm.

Theorem 5.1.1 Every member of M(X) is regular, i.e., for all B ∈ B and
every ε > 0 there exist an open set Uε and a closed sed Cε such that Cε ⊆
B ⊆ Uε such that µ(Uε \ Cε) < ε.

Idea of proof Call a set B ∈ B with the above property a regular set. Let
R = {B ∈ B : B is regular }. Show that R is a σ-algebra containing all the
closed sets. ¤

Corollary 5.1.1 For any B ∈ B, and any µ ∈ M(X),

µ(B) = sup
C⊆B:C closed

µ(C) = inf
B⊆U :U open

µ(U).

79
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Theorem 5.1.2 Let µ,m ∈ M(X). If

∫

X

f dµ =

∫

X

f dm

for all f ∈ C(X), then µ = m.

Proof From the above corollary, it suffices to show that µ(C) = m(C) for
all closed subsets C of X. Let ε > 0, by regularity of the measure m there
exists an open set Uε such that C ⊆ Uε and m(Uε \C) < ε. Define f ∈ C(X)
as follows

f(x) =

{
0 x /∈ Uε

d(x,X\Uε)
d(x,X\Uε)+d(x,C)

x ∈ Uε.

Notice that 1C ≤ f ≤ 1Uε , thus

µ(C) ≤
∫

X

f dµ =

∫

X

f dm ≤ m(Uε) ≤ m(C) + ε.

Using a similar argument, one can show that m(C) ≤ µ(C) + ε. Therefore,
µ(C) = m(C) for all closed sets, and hence for all Borel sets. ¤

This allows us to define a metric structure on M(X) as follows. A sequence
{µn} in M(X) converges to µ ∈ M(X) if and only if

lim
n→∞

∫

X

f(x) dµn(x) =

∫

X

f(x) dµ(x)

for all f ∈ C(X). We will show that under this notion of convergence
the space M(X) is compact, but first we need The Riesz Representation
Representation Theorem.

Theorem 5.1.3 (The Riesz Representation Theorem) Let X be a compact
metric space and J : C(X) → C a continuous linear map such that J is a
positive operator and J(1) = 1. Then there exists a µ ∈ M(X) such that
J(f) =

∫
X

f(x) dµ(x).

Theorem 5.1.4 The space M(X) is compact.
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Idea of proof Let {µn} be a sequence in M(X). Choose a countable dense
subset of {fn} of C(X). The sequence {∫

X
f1 dµn} is a bounded sequence of

complex numbers, hence has a convergent subsequence {∫
X

f1 dµ
(1)
n }. Now,

the sequence {∫
X

f2 dµ
(1)
n } is bounded, and hence has a convergent sub-

sequence {∫
X

f2 dµ
(2)
n }. Notice that {∫

X
f1 dµ

(2)
n } is also convergent. We

continue in this manner, to get for each i a subsequence {µ(i)
n } of {µn}

such that for all j ≤ i, {µ(i)
n } is a subsequence of {µ(j)

n } and {∫
X

fj dµ
(i)
n }

converges. Consider the diagonal sequence {µ(n)
n }, then {∫

X
fj dµ

(n)
n } con-

verges for all j, and hence {∫
X

f dµ
(n)
n } converges for all f ∈ C(X). Now

define J : C(X) → C by J(f) = limn→∞{
∫

X
f dµ

(n)
n }. Then, J is lin-

ear, continuous (|J(f)| ≤ supx∈X |f(x)|), positive and J(1) = 1. Thus,
by Riesz Representation Theorem, there exists a µ ∈ M(X) such that

J(f) = limn→∞{
∫

X
f dµ

(n)
n } =

∫
X

f dµ. Therefore, limn→∞ µ
(n)
n = µ, and

M(X) is compact. ¤

Let T : X → X be a continuous transformation. Since B is generated
by the open sets, then T is measurable with respect to B. Furthermore, T
induces in a natural way, an operator T : M(X) → M(X) given by

(Tµ)(A) = µ(T−1A)

for all A ∈ B. Then T
i
µ(A) = µ(T−iA). Using a standard argument, one

can easily show that
∫

X

f(x) d(Tµ)(x) =

∫

X

f(Tx)dµ(x)

for all continuous functions f on X. Note that T is measure preserving with
respect to µ ∈ M(X) if and only if Tµ = µ. Equivalently, µ is measure
preserving if and only if

∫

X

f(x) dµ(x) =

∫

X

f(Tx) dµ(x)

for all continuous functions f on X. Let

M(X, T ) = {µ ∈ M(X) : Tµ = µ}
be the collection of all probability measures under which T is measure pre-
serving.
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Theorem 5.1.5 Let T : X → X be continuous, and {σn} a sequence in
M(X). Define a sequence {µn} in M(X) by

µn =
1

n

n−1∑
i=0

T
i
σn.

Then, any limit point µ of {µn} is a member of M(X, T ).

Proof We need to show that for any continuous function f on X, one
has

∫
X

f(x) dµ(x) =
∫

X
f(Tx) dµ. Since M(X) is compact there exists a

µ ∈ M(X) and a subsequence {µni
} such that µni

→ µ in M(X). Now for
any f continuous, we have

∣∣∣∣
∫

X

f(Tx) dµ(x)−
∫

X

f(x) dµ(x)

∣∣∣∣ = lim
j→∞

∣∣∣∣
∫

X

f(Tx) dµnj
(x)−

∫

X

f(x) dµnj
(x)

∣∣∣∣

= lim
j→∞

∣∣∣∣∣
1

nj

∫

X

nj−1∑
i=0

(
f(T i+1x)− f(T ix)

)
dσnj

(x)

∣∣∣∣∣

= lim
j→∞

∣∣∣∣
1

nj

∫

X

(f(T njx)− f(x)) dσnj
(x)

∣∣∣∣

≤ lim
j→∞

2 supx∈X |f(x)|
nj

= 0.

Therefore µ ∈ M(X,T ). ¤

Theorem 5.1.6 Let T be a continuous transformation on a compact metric
space. Then,

(i) M(X,T ) is a compact convex subset of M(X).

(ii) µ ∈ M(X,T ) is an extreme point (i.e. µ cannot be written in a non-
trivial way as a convex combination of elements of M(X,T )) if and
only if T is ergodic with respect to µ.

Proof (i) Clearly M(X,T ) is convex. Now let {µn} be a sequence in
M(X, T ) converging to µ in M(X). We need to show that µ ∈ M(X, T ).
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Since T is continuous, then for any continuous function f on X, the function
f ◦ T is also continuous. Hence,∫

X

f(Tx) dµ(x) = lim
n→∞

∫

X

f(Tx) dµn(x)

= lim
n→∞

∫

X

f(x) dµn(x)

=

∫

X

f(x) dµ(x).

Therefore, T is measure preserving with respect to µ, and µ ∈ M(X,T ).
(ii) Suppose T is ergodic with respect to µ, and assume that

µ = pµ1 + (1− p)µ2

for some µ1, µ2 ∈ M(X, T ), and some 0 < p ≤ 1. We will show that µ = µ1.
Notice that the measure µ1 is absolutely continuous with respect to µ, and
T is ergodic with respect to µ, hence by Theorem (2.1.2) we have µ1 = µ.

Conversely, (we prove the contrapositive) suppose that T is not ergodic with
respect to µ. Then there exists a measurable set E such that T−1E = E,
and 0 < µ(E) < 1. Define measures µ1, µ2 on X by

µ1(B) =
µ(B ∩ E)

µ(E)
and µ1(B) =

µ (B ∩ (X \ E))

µ(X \ E)
.

Since E and X \E are T -invariant sets, then µ1, µ2 ∈ M(X, T ), and µ1 6= µ2

since µ1(E) = 1 while µ2(E) = 0. Furthermore, for any measurable set B,

µ(B) = µ(E)µ1(B) + (1− µ(E))µ2(B),

i.e. µ1 is a non-trivial convex combination of elements of M(X,T ). Thus, µ
is not an extreme point of M(X,T ). ¤

Since the Banach space C(X) of all continuous functions on X (under
the sup norm) is separable i.e. C(X) has a countable dense subset, one gets
the following strengthening of the Ergodic Theorem.

Theorem 5.1.7 If T : X → X is continuous and µ ∈ M(X, T ) is ergodic,
then there exists a measurable set Y such that µ(Y ) = 1, and

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫

X

f(x) dµ(x)

for all x ∈ Y , and f ∈ C(X).
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Proof Choose a countable dense subset {fk} in C(X). By the Ergodic
Theorem, for each k there exists a subset Xk with µ(Xk) = 1 and

lim
n→∞

1

n

n−1∑
i=0

fk(T
ix) =

∫

X

fk(x) dµ(x)

for all x ∈ Xk. Let Y =
⋂∞

k=1 Xk, then µ(Y ) = 1, and

lim
n→∞

1

n

n−1∑
i=0

fk(T
ix) =

∫

X

fk(x)dµ(x)

for all k and all x ∈ Y . Now, let f ∈ C(X), then there exists a subse-
quence {fkj

} converging to f in the supremum norm, and hence is uniformly
convergent. For any x ∈ Y , using uniform convergence and the dominated
convergence theorem, one gets

lim
n→∞

1

n

n−1∑
i=0

f(T ix) = lim
n→∞

lim
j→∞

1

n

n−1∑
i=0

fkj
(T ix)

= lim
j→∞

lim
n→∞

1

n

n−1∑
i=0

fkj
(T ix)

= lim
j→∞

∫

X

fkj
dµ =

∫

X

f dµ.

¤

Theorem 5.1.8 Let T : X → X be continuous, and µ ∈ M(X, T ). Then T
is ergodic with respect to µ if and only if

1

n

n−1∑
i=0

δT ix → µ a.e.

Proof Suppose T is ergodic with respect to µ. Notice that for any f ∈
C(X), ∫

X

f(y) d(δT ix)(y) = f(T ix),
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Hence by theorem 5.1.7, there exists a measurable set Y with µ(Y ) = 1 such
that

lim
n→∞

1

n

n−1∑
i=0

∫

X

f(y) d(δT ix)(y) = lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫

X

f(y) dµ(y)

for all x ∈ Y , and f ∈ C(X). Thus, 1
n

∑n−1
i=0 δT ix → µ for all x ∈ Y .

Conversely, suppose 1
n

∑n−1
i=0 δT ix → µ for all x ∈ Y , where µ(Y ) = 1. Then

for any f ∈ C(X) and any g ∈ L1(X,B, µ) one has

lim
n→∞

1

n

n−1∑
i=0

f(T ix)g(x) = g(x)

∫

X

f(y) dµ(y).

By the dominated convergence theorem

lim
n→∞

1

n

n−1∑
i=0

∫

X

f(T ix)g(x) dµ(x) =

∫

X

g(x)dµ(x)

∫

X

f(y) dµ(y).

Now, let F,G ∈ L2(X,B, µ). Then, G ∈ L1(X,B, µ) so that

lim
n→∞

1

n

n−1∑
i=0

∫

X

f(T ix)G(x) dµ(x) =

∫

X

G(x)dµ(x)

∫

X

f(y)dµ(y)

for all f ∈ C(X). Let ε > 0, there exists f ∈ C(X) such that ||F − f ||2 < ε
which implies that | ∫ F dµ − ∫

fdµ| < ε. Furthermore, there exists N so
that for n ≥ N one has

∣∣∣∣∣
∫

X

1

n

n−1∑
i=0

f(T ix)G(x) dµ(x)−
∫

X

Gdµ

∫

X

f dµ

∣∣∣∣∣ < ε.
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Thus, for n ≥ N one has
∣∣∣∣∣
∫

X

1

n

n−1∑
i=0

F (T ix)G(x) dµ(x)−
∫

X

Gdµ

∫

X

F dµ

∣∣∣∣∣

≤
∫

X

1

n

n−1∑
i=0

∣∣F (T ix)− f(T ix)
∣∣ |G(x)| dµ(x)

+

∣∣∣∣∣
∫

X

1

n

n−1∑
i=0

f(T ix)G(x)dµ(x)−
∫

X

Gdµ

∫

X

fdµ

∣∣∣∣∣

+

∣∣∣∣
∫

X

fdµ

∫

X

Gdµ−
∫

X

F dµ

∫

X

G dµ

∣∣∣∣
< ε||G||2 + ε + ε||G||2.

Thus,

lim
n→∞

1

n

n−1∑
i=0

∫

X

F (T ix)G(x) dµ(x) =

∫

X

G(x) dµ(x)

∫

X

F (y) dµ(y)

for all F, G ∈ L2(X,B, µ) and x ∈ Y . Taking F and G to be indicator
functions, one gets that T is ergodic.

¤
Exercise 5.1.1 Let X be a compact metric space and T : X → X be a
continuous homeomorphism. Let x ∈ X be periodic point of T of period n,
i.e. T nx = x and T jx 6= x for j < i. Show that if µ ∈ M(X,T ) is ergodic

and µ({x}) > 0, then µ =
1

n

n−1∑
i=0

δT ix.

5.2 Unique Ergodicity

A continuous transformation T : X → X on a compact metric space is
uniquely ergodic if there is only one T -invariant probabilty measure µ on
X. In this case, M(X,T ) = {µ}, and µ is necessarily ergodic, since µ is an
extreme point of M(X, T ). Recall that if ν ∈ M(X, T ) is ergodic, then there
exists a measurable subset Y such that ν(Y ) = 1 and

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫

X

f(y) dν(y)
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for all x ∈ Y and all f ∈ C(X). When T is uniquely ergodic we will see that
we have a much stronger result.

Theorem 5.2.1 Let T : X → X be a continuous transformation on a com-
pact metric space X. Then the following are equivalent:

(i) For every f ∈ C(X), the sequence { 1

n

n−1∑
j=0

f(T jx)} converges uniformly

to a constant.

(ii) For every f ∈ C(X), the sequence {1

n

n−1∑
j=0

f(T jx)} converges pointwise

to a constant.

(iii) There exists a µ ∈ M(X, T ) such that for every f ∈ C(X) and all
x ∈ X.

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫

X

f(y) dµ(y).

(iv) T is uniquely ergodic.

Proof (i) ⇒ (ii) immediate.

(ii) ⇒ (iii) Define L : C(X) → C by

L(f) = lim
n→∞

1

n

n−1∑
i=0

f(T ix).

By assumption L(f) is independent of x, hence L is well defined. It is easy
to see that L is linear, continuous (|L(f)| ≤ supx∈X |f(x)|), positive and
L(1) = 1. Thus, by Riesz Representation Theorem there exists a probability
measure µ ∈ M(X) such that

L(f) =

∫

X

f(x) dµ(x)

for all f ∈ C(x). But

L(f ◦ T ) = lim
n→∞

1

n

n−1∑
i=0

f(T i+1x) = L(f).
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Hence, ∫

X

f(Tx) dµ(x) =

∫

X

f(x) dµ(x).

Thus, µ ∈ M(X,T ), and for every f ∈ C(X),

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫

X

f(x) dµ(x)

for all x ∈ X.

(iii) ⇒ (iv) Suppose µ ∈ M(X,T ) is such that for every f ∈ C(X),

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫

X

f(x) dµ(x)

for all x ∈ X. Assume ν ∈ M(X,T ), we will show that µ = ν. For any f ∈
C(X), since the sequence { 1

n

n−1∑
j=0

f(T jx)} converges pointwise to the constant

function
∫

X
f(x) dµ(x), and since each term of the sequence is bounded in

absolute value by the constant supx∈X |f(x)|, it follows by the Dominated
Convergence Theorem that

lim
n→∞

∫

X

1

n

n−1∑
i=0

f(T ix) dν(x) =

∫

X

∫

X

f(x) dµ(x)dν(y) =

∫

X

f(x) dµ(x).

But for each n,

∫

X

1

n

n−1∑
i=0

f(T ix) dν(x) =

∫

X

f(x) dν(x).

Thus,
∫

X
f(x) dµ(x) =

∫
X

f(x) dν(x), and µ = ν.

(iv) ⇒ (i) The proof is done by contradiction. Assume M(X, T ) = {µ} and

suppose g ∈ C(X) is such that the sequence { 1

n

n−1∑
j=0

g◦T j} does not converge

uniformly on X. Then there exists ε > 0 such that for each N there exists
n > N and there exists xn ∈ X such that

∣∣ 1
n

n−1∑
j=0

g(T jxn)−
∫

X

g dµ
∣∣ ≥ ε.
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Let

µn =
1

n

n−1∑
j=0

δT jxn
=

1

n

n−1∑
j=0

T
j
δxn .

Then,

|
∫

X

gdµn −
∫

X

g dµ| ≥ ε.

Since M(X) is compact. there exists a subsequence µni
converging to ν ∈

M(X). Hence,

|
∫

X

g dν −
∫

X

g dµ| ≥ ε.

By Theorem (5.1.5), ν ∈ M(X, T ) and by unique ergodicity µ = ν, which is
a contradiction. ¤

Example If Tθ is an irrational rotation, then Tθ is uniquely ergodic. This is
a consequence of the above theorem and Weyl’s Theorem on uniform distri-
bution: for any Riemann integrable function f on [0, 1), and any x ∈ [0, 1),
one has

lim
n→∞

1

n

n−1∑
i=0

f(x + iθ − bx + iθc) =

∫

X

f(y) dy.

As an application of this, let us consider the following question. Consider
the sequence of first digits

{1, 2, 4, 8, 1, 3, 6, 1, . . .}
obtained by writing the first decimal digit of each term in the sequence

{2n : n ≥ 0} = {1, 2, 4, 8, 16, 32, 64, 128, . . .}.
For each k = 1, 2, . . . , 9, let pk(n) be the number of times the digit k appears
in the first n terms of the first digit sequence. The asymptotic relative fre-

quency of the digit k is then limn→∞
pk(n)

n
. We want to identify this limit

for each k ∈ {1, 2, . . . 9}. To do this, let θ = log10 2, then θ is irrational. For
k = 1, 2, . . . , 9, let Jk = [log10 k, log10(k +1)). By unique ergodicity of Tθ, we
have for each k = 1, 2, . . . , 9,

lim
n→∞

1

n

n−1∑
i=0

1Jk
(T j

θ (0)) = λ(Jk) = log10

(
k + 1

k

)
.
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Returning to our original problem, notice that the first digit of 2i is k if and
only if

k · 10r ≤ 2i < (k + 1) · 10r

for some r ≥ 0. In this case,

r + log10 k ≤ i log10 2 = iθ < r + log10(k + 1).

This shows that r = biθc, and

log10 k ≤ iθ − biθc < log10(k + 1).

But T i
θ(0) = iθ−biθc, so that T i

θ(0) ∈ Jk. Summarizing, we see that the first
digit of 2i is k if and only if T i

θ(0) ∈ Jk. Thus,

lim
n→∞

pk(n)

n
= lim

n→∞
1

n

n−1∑
i=0

1Jk
(T i

θ(0)) = log10

(
k + 1

k

)
.



Chapter 6

Hurewicz Ergodic Theorem

In this section we consider a class of non-measure preserving transformations.
In particular, we study invertible, non-singular and conservative transforma-
tions on a probability space. We first start with a quick review of equivalent
measures, we then define non-singular and conservative transformations, and
state some of their properties. We end this section by giving a new proof
of Hurewicz Ergodic Theorem, which is a generalization of Birkhoff Ergodic
Theorem to non-singular conservative transformations.

6.1 Equivalent measures

Recall that two measures µ and ν on a measure space (Y,F) are equivalent
if µ and ν have the same null-sets, i.e.,

µ(A) = 0 ⇔ ν(A) = 0, A ∈ F .

The theorem of Radon-Nikodym says that if µ, ν are σ-finite and equiv-
alent, then there exist measurable functions f, g ≥ 0, such that

µ(A) =

∫

A

f dν and ν(A) =

∫

A

g dµ.

Furthermore, for all h ∈ L1(µ) (or L1(ν)),

∫
h dµ =

∫
hf dν and

∫
h dν =

∫
hg dµ.

91
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Usually the function f is denoted by
dµ

dν
and the function g by

dν

dµ
.

Now suppose that (X,B, µ) is a probability space, and T : X → X a
measurable transformation. One can define a new measure µ◦T−1 on (X,B)
by µ ◦ T−1(A) = µ(T−1A) for A ∈ B. It is not hard to prove that for
f ∈ L1(µ), ∫

f d(µ ◦ T−1) =

∫
f ◦ T dµ (6.1)

Exercise 6.1.1 Starting with indicator functions, give a proof of (6.1).

Note that if T is invertible, then one has that

∫
f d(µ ◦ T ) =

∫
f ◦ T−1 dµ (6.2)

6.2 Non-singular and conservative transfor-

mations

Definition 6.2.1 Let (X,B, µ) be a probability space and T : X → X an
invertible measurable function. T is said to be non-singular if for any A ∈ B,

µ(A) = 0 if and only if µ(T−1A) = 0.

Since T is invertible, non-singularity implies that

µ(A) = 0 if and only if µ(T nA) = 0, n 6= 0.

This implies that the measures µ ◦ T n defined by µ ◦ T n(A) = µ(T nA) is
equivalent to µ (and hence equivalent to each other). By the theorem of
Radon-Nikodym, there exists for each n 6= 0, a non-negative measurable

function ωn(x) =
dµ ◦ T n

dµ
(x) such that

µ(T nA) =

∫

A

ωn(x) dµ(x).

We have the following propositions.
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Proposition 6.2.1 Suppose (X,B, µ) is a probability space, and T : X → X
is invertible and non-singular. Then for every f ∈ L1(µ),

∫

X

f(x) dµ(x) =

∫

X

f(Tx)ω1(x) dµ(x) =

∫

X

f(T nx)ωn(x) dµ(x).

Proof We show the result for indicator functions only, the rest of the proof
is left to the reader.

∫

X

1A(x) dµ(x) = µ(A) = µ(T (T−1A))

=

∫

T−1A

ω1(x) dµ(x)

=

∫

X

1A(Tx)ω1(x) dµ(x).

¤

Proposition 6.2.2 Under the assumptions of Proposition 6.2.1, one has for
all n, m ≥ 1, that

ωn+m(x) = ωn(x)ωm(T nx), µ a.e.

Proof For any A ∈ B,
∫

A

ωn(x)ωm(T nx)dµ(x) =

∫

X

1A(x)ωm(T nx)d(µ ◦ T n)(x)

=

∫

X

1A(T−nx)ωm(x)dµ(x)

=

∫

X

1T nA(x)d(µ ◦ Tm)(x)

= µ ◦ Tm(T nA) = µ(Tm+nA) =

∫

A

ωn+m(x)dµ(x).

Hence, ωn+m(x) = ωn(x)ωm(T nx), µ a.e.

Exercise 6.2.1 Let (X,B, µ) be a probability space, and T : X → X an
invertible non-singular transformation. For any measurable function f , set
fn(x) =

∑n−1
i=0 f(T ix)ωi(x), n ≥ 1, where ω0(x) = 1. Show that for all

n,m ≥ 1,
fn+m(x) = fn(x) + ωn(x)fm(T nx).
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Definition 6.2.2 Let (X,B, µ) be a probability space, and T : X → X a
measurable transformation. We say that T is conservative if for any A ∈ B
with µ(A) > 0, there exists an n ≥ 1 such that µ(A ∩ T−nA) > 0.

Note that if T is invertible, non-singular and conservative , then T−1 is also
non-singular and conservative. In this case, for any A ∈ B with µ(A) > 0,
there exists an n 6= 0 such that µ(A ∩ T nA) > 0.

Proposition 6.2.3 Suppose T is invertible, non-singular and conservative
on the probability space (X,B, µ), and let A ∈ B with µ(A) > 0. Then for µ
a.e. x ∈ A there exist infinitely many positive and negative integers n, such
that T nx ∈ A.

Proof Let B = {x ∈ A : T nx /∈ A for all n ≥ 1}. Note that for any n ≥ 1,
B ∩ T−nB = ∅. If µ(B) > 0, then by conservativity there exists an n ≥ 1,
such that µ(B∩T−nB) is positive, which is a contradiction. Hence, µ(B) = 0,
and by non-singularity we have µ(T−nB) = 0 for all n ≥ 1.

Now, let C = {x ∈ A; T nx ∈ A for only finitely many n ≥ 1}, then
C ⊂ ⋃∞

n=1 T−nB, implying that

µ(C) ≤
∞∑

n=1

µ(T−nB) = 0.

Therefore, for almost every x ∈ A there exist infinitely many n ≥ 1 such that
T nx ∈ A. Replacing T by T−1 yields the result for n ≤ −1. ¤

Proposition 6.2.4 Suppose T is invertible, non-singular and conservative,
then ∞∑

n=1

ωn(x) = ∞, µ a.e.

Proof Let A = {x ∈ X :
∑∞

n=1 ωn(x) < ∞}. Note that

A =
∞⋃

M=1

{x ∈ X :
∞∑

n=1

ωn(x) < M}.

If µ(A) > 0, then there exists an M ≥ 1 such that the set

B = {x ∈ X :
∞∑

n=1

ωn(x) < M}
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has positive measure. Then,
∫

B

∑∞
n=1 ωn(x) dµ(x) < Mµ(B) < ∞. However,

∫

B

∞∑
n=1

ωn(x) dµ(x) =
∞∑

n=1

∫

B

ωn(x) dµ(x)

=
∞∑

n=1

µ(T nB)

=
∞∑

n=1

∫

X

1T nB(x) dµ(x)

=

∫

X

∞∑
n=1

1B(T−nx) dµ(x).

Hence,
∫

X

∑∞
n=1 1B(T−nx) dµ(x) < ∞, which implies that

∞∑
n=1

1B(T−nx) < ∞ µ a.e.

Therefore, for µ a.e. x one has T−nx ∈ B for only finitely many n ≥ 1,
contradicting Proposition 6.2.3. Thus µ(A) = 0, and

∞∑
n=1

ωn(x) = ∞, µ a.e.

¤

6.3 Hurewicz Ergodic Theorem

The following theorem by Hurewicz is a generalization of Birkhoff’s Ergodic
Theorem to our setting; see also Hurewicz’ original paper [H]. We give a new
prove, similar to the proof for Birkhoff’s Theorem; see Section 2.1 and [KK].

Theorem 6.3.1 Let (X,B, µ) be a probability space, and T : X → X an
invertible, non-singular and conservative transformation. If f ∈ L1(µ), then

lim
n→∞

n−1∑
i=0

f(T ix)ωi(x)

n−1∑
i=0

ωi(x)

= f∗(x)
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exists µ a.e. Furthermore, f∗ is T -invariant and
∫

X

f(x) dµ(x) =

∫

X

f∗(x) dµ(x).

Proof Assume with no loss of generality that f ≥ 0 (otherwise we write
f = f+ − f−, and we consider each part separately). Let

fn(x) = f(x) + f(Tx)ω1(x) + · · ·+ f(T n−1x)ωn−1(x),

gn(x) = ω0(x) + ω1(x) + · · ·+ ωn−1(x), ω0(x) = g0(x) = 1,

f(x) = lim sup
n→∞

fn(x)
n−1∑
i=0

ωi(x)

= lim sup
n→∞

fn(x)

gn(x)
,

and

f(x) = lim inf
n→∞

fn(x)
n−1∑
i=0

ωi(x)

= lim inf
n→∞

fn(x)

gn(x)
.

By Proposition (6.2.2), one has gn+m(x) = gn(x) + gm(T nx). Using Exercise
(6.2.1) and Proposition (6.2.4), we will show that f and f are T -invariant.
To this end,

f(Tx) = lim sup
n→∞

fn(Tx)

gn(T nx)

= lim sup
n→∞

fn+1(x)− f(x)

ω1(x)

gn+1(x)− g(x)
ω1(x)

= lim sup
n→∞

fn+1(x)− f(x)

gn+1(x)− g(x)

= lim sup
n→∞

[
fn+1(x)

gn+1(x)
· gn+1(x)

gn+1(x)− g(x)
− f(x)

gn+1(x)− g(x)

]

= lim sup
n→∞

fn+1(x)

gn+1(x)

= f(x).
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(Similarly f is T -invariant).
Now, to prove that f∗ exists, is integrable and T -invariant, it is enough

to show that ∫

X

f dµ ≥
∫

X

f dµ ≥
∫

X

f dµ.

For since f − f ≥ 0, this would imply that f = f = f∗. a.e.

We first prove that
∫

X
fdµ ≤ ∫

X
f dµ. Fix any 0 < ε < 1, and let L > 0 be

any real number. By definition of f , for any x ∈ X, there exists an integer
m > 0 such that

fm(x)

gm(x)
≥ min(f(x), L)(1− ε).

Now, for any δ > 0 there exists an integer M > 0 such that the set

X0 = {x ∈ X : ∃ 1 ≤ m ≤ M with fm(x) ≥ gm(x) min(f(x), L)(1− ε)}

has measure at least 1− δ. Define F on X by

F (x) =

{
f(x) x ∈ X0

L x /∈ X0.

Notice that f ≤ F (why?). For any x ∈ X, let an = an(x) = F (T nx)ωn(x),
and bn = bn(x) = min(f(x), L)(1 − ε)ωn(x). We now show that {an} and
{bn} satisfy the hypothesis of Lemma 2.1.1 with M > 0 as above. For any
n = 0, 1, 2, . . .

–if T nx ∈ X0, then there exists 1 ≤ m ≤ M such that

fm(T nx) ≥ min(f(x), L)(1− ε)gm(T nx).

Hence,
ωn(x)fm(T nx) ≥ min(f(x), L)(1− ε)gm(T nx)ωn(x).

Now,

bn + . . . + bn+m−1 = min(f(x), L)(1− ε)gm(T nx)ωn(x)

≤ ωn(x)fm(T nx)

= f(T nx)ωn(x) + f(T n+1x)ωn+1(x) + · · ·+ f(T n+m−1x)ωn+m−1(x)

≤ F (T nx)ωn(x) + F (T n+1x)ωn+1(x) + · · ·+ F (T n+m−1x)ωn+m−1(x)

= an + an+1 + · · ·+ an+m−1.
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–If T nx /∈ X0, then take m = 1 since

an = F (T nx)ωn(x) = Lωn(x) ≥ min(f(x), L)(1− ε)ωn(x) = bn.

Hence by T -invariance of f , and Lemma 2.1.1 for all integers N > M one
has

F (x)+F (Tx)+ω1(x)+· · ·+ωN−1(x)F (TN−1x) ≥ min(f(x), L)(1−ε)gN−M(x).

Integrating both sides, and using Proposition (6.2.1) together with the T -
invariance of f one gets

N

∫

X

F (x) dµ(x) ≥
∫

X

min(f(x), L)(1− ε)gN−M(x) dµ(x)

= (N −M)

∫

X

min(f(x), L)(1− ε) dµ(x).

Since ∫

X

F (x) dµ(x) =

∫

X0

f(x) dµ(x) + Lµ(X \X0),

one has
∫

X

f(x) dµ(x) ≥
∫

X0

f(x) dµ(x)

=

∫

X

F (x) dµ(x)− Lµ(X \X0)

≥ (N −M)

N

∫

X

min(f(x), L)(1− ε) dµ(x)− Lδ.

Now letting first N →∞, then δ → 0, then ε → 0, and lastly L →∞ one
gets together with the monotone convergence theorem that f is integrable,
and ∫

X

f(x) dµ(x) ≥
∫

X

f(x) dµ(x).

We now prove that

∫

X

f(x) dµ(x) ≤
∫

X

f(x) dµ(x).
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Fix ε > 0, for any x ∈ X there exists an integer m such that

fm(x)

gm(x)
≤ (f(x) + ε).

For any δ > 0 there exists an integer M > 0 such that the set

Y0 = {x ∈ X : ∃ 1 ≤ m ≤ M with fm(x) ≤ (f(x) + ε)gm(x)}
has measure at least 1− δ. Define G on X by

G(x) =

{
f(x) x ∈ Y0

0 x /∈ Y0.

Notice that G ≤ f . Let bn = G(T nx)ωn(x), and an = (f(x) + ε)ωn(x). We
now check that the sequences {an} and {bn} satisfy the hypothesis of Lemma
2.1.1 with M > 0 as above.

–if T nx ∈ Y0, then there exists 1 ≤ m ≤ M such that

fm(T nx) ≤ (f(x) + ε)gm(T nx).

Hence,

ωn(x)fm(T nx) ≤ (f(x)+ε)gm(T nx)ωn(x) = (f(x)+ε)(ωn(x)+· · ·+ωn+m−1(x).

By Proposition (6.2.2), and the fact that f ≥ G, one gets

bn + . . . + bn+m−1 = G(T nx)ωn(x) + · · ·+ G(T n+m−1x)ωn+m−1(x)

≤ f(T nx)ωn(x) + · · ·+ f(T n+m−1x)ωn+m−1(x)

= ωn(x)fm(T nx)

≤ (f(x) + ε)(ωn(x) + · · ·+ ωn+m+1(x))

= an + · · · an+m−1.

–If T nx /∈ Y0, then take m = 1 since

bn = G(T nx)ωn(x) = 0 ≤ (f(x) + ε)(ωn(x)) = an.

Hence by Lemma 2.1.1 one has for all integers N > M

G(x) + G(Tx)ω1(x) + . . . + G(TN−M−1x)ωN−M−1(x) ≤ (f(x) + ε)gN(x).
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Integrating both sides yields

(N −M)

∫

X

G(x)dµ(x) ≤ N(

∫

X

f(x)dµ(x) + ε).

Since f ≥ 0, the measure ν defined by ν(A) =
∫

A
f(x) dµ(x) is absolutely

continuous with respect to the measure µ. Hence, there exists δ0 > 0 such
that if µ(A) < δ, then ν(A) < δ0. Since µ(X \ Y0) < δ, then ν(X \ Y0) =∫

X\Y0
f(x)dµ(x) < δ0. Hence,

∫

X

f(x) dµ(x) =

∫

X

G(x) dµ(x) +

∫

X\Y0

f(x) dµ(x)

≤ N

N −M

∫

X

(f(x) + ε) dµ(x) + δ0.

Now, let first N → ∞, then δ → 0 (and hence δ0 → 0), and finally ε → 0,
one gets ∫

X

f(x) dµ(x) ≤
∫

X

f(x) dµ(x).

This shows that ∫

X

f dµ ≥
∫

X

f dµ ≥
∫

X

f dµ,

hence, f = f = f∗ a.e., and f∗ is T -invariant. ¤

Remark We can extend the notion of ergodicity to our setting. If T is non-
singular and conservative, we say that T is ergodic if for any measurable set
A satisfying µ(A∆T−1A) = 0, one has µ(A) = 0 or 1. It is easy to check that
the proof of Proposition (1.7.1) holds in this case, so that T ergodic implies
that each T -invariant function is a constant µ a.e. Hence, if T is invertible,
non-singular, conservative and ergodic, then by Hurewicz Ergodic Theorem
one has for any f ∈ L1(µ),

lim
n→∞

n−1∑
i=0

f(T ix)ωi(x)

n−1∑
i=0

ωi(x)

=

∫

X

fdµ µ a.e.



Bibliography

[B] Michael Brin and Garrett Stuck, Introduction to Dynamical Systems,
Cambridge University Press, 2002.

[D] K. Dajani and C. Kraaikamp, Ergodic theory of numbers, Carus
Mathematical Monographs, 29. Mathematical Association of Amer-
ica, Washington, DC 2002.

[H] W. Hurewicz, Ergodic theorem withour invariant measure. Annals of
Math., 45 (1944), 192–206.

[KK] Kamae, Teturo; Keane, Michael, A simple proof of the ratio ergodic
theorem, Osaka J. Math. 34 (1997), no. 3, 653–657.

[KT] Kingman and Taylor, Introduction to measure and probability, Cam-
bridge Press, 1966.

[Pa] William Parry, Topics in Ergodic Theory, Reprint of the 1981 original.
Cambridge Tracts in Mathematics, 75. Cambridge University Press,
Cambridge, 2004.

[P] Karl Petersen, Ergodic Theory, Cambridge Studies in Advanced
Mathematics, 2. Cambridge University Press, Cambridge, 1989.

[W] Peter Walters, An Introduction to Ergodic Theory, Graduate Texts
in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

101



Index

β-transformations, 10

Stationary Stochastic Processes, 11

algebra, 7
algebra generated, 7
atoms of a partition, 58

Baker’s Transformation, 10
Bernoulli Shifts, 11
binary expansion, 9
Birkhoff’s Ergodic Theorem, 29

common refinement, 58
conditional expectation, 35
conditional information function, 66
conservative, 94
Continued Fractions, 13

dynamical system, 47

entropy of the partition, 57
entropy of the transformation, 61
equivalent measures, 91
ergodic, 19
ergodic decomposition, 40
extreme point, 82

factor map, 51
first return time, 15

generator, 64

Hurewicz Ergodic Theorem, 95

induced map, 15
induced operator, 21
information function, 66
integral system, 18
irreducible Markov chain, 42
isomorphic, 47

Kac’s Lemma, 35
Knopp’s Lemma, 25

Lochs’ Theorem, 72

Markov measure, 41
Markov Shifts, 11
measure preserving, 6
monotone class, 7

natural extension, 52
non-singular transformation, 92
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