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1. (Exercise 13.6, p.131)

(i) Prove that
∫

(0,∞)
e−txdλ(t) = 1

x
for all x > 0.

(ii) Use (i) and Fubini’s Theorem to show that

lim
n→∞

∫
(0,n)

sin x

x
dλ(x) =

π

2
.

Proof(i): Since e−tx > 0 for all t and x, hence, for each fixed x > 0 the sequence
e−tx1(0,n)(t) ↗ e−tx1(0,∞). Furthermore, for each n, the function t → e−tx is Rie-
mann integrable on [0, n]. Thus, by Beppo-Levi, and Theorem 11.8(i),∫

(0,∞)
e−txdλ(t) = limn→∞

∫
(0,n)

e−txdλ(t)

= limn→∞
∫

[0,n]
e−txdλ(t)

= limn→∞
∫ n

0
e−txdt

= limn→∞
−1
x

e−tx|n0 = 1
x
.

Proof(ii): Note first that the function sin x
x

is not Lebesgue integrable on (0,∞)
(see Remark 11.11 on p.97), so we have to be careful in the application of Fubini’s
Theorem.

Let I = limn→∞
∫

(0,n)
sin x

x
dλ(x), then by part (i),

I = lim
n→∞

∫
(0,n)

lim
k→∞

∫
(0,k)

e−tx sin xdλ(t) dλ(x).

Since |
∫

(0,k)
e−tx sin x dλ(t)| ≤ | sin x

x
| which is Riemann and Lebesgue integrable on

[0, n], hence by Lebesgue Dominated Convergence Therem,

I = lim
n→∞

lim
k→∞

∫
(0,n)

∫
(0,k)

e−tx sin x dλ(t) dλ(x).

By Fubini’s Theorem, and integration by parts (after replacing the Lebesgue integral
by the Riemann integral), we get

I = limn→∞ limk→∞
∫

(0,k)

∫
(0,n)

e−tx sin x dλ(x) dλ(t)

= limn→∞ limk→∞
∫

(0,k)
1

t2+1
(1− e−nt(cos n + t sin n)) dλ(t).
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Now,

|1(0,k)
1

t2 + 1

(
1− e−nt(cos n + t sin n)

)
| ≤ 2

t2 + 1
+

te−nt

t2 + 1
∈ L1((0,∞)),

Thus by Lebesgue Dominated Convergence Therem,

I = lim
n→∞

∫
(0,∞)

1

t2 + 1

(
1− e−nt(cos n + t sin n)

)
dλ(t).

Finally, on (0,∞),

| 1

t2 + 1

(
1− e−nt(cos n + t sin n)

)
| ≤ 2

t2 + 1
+

te−t

t2 + 1
,

hence again by Lebesgue Dominated Convergence Therem, we get

I =
∫

(0,∞)
limn→∞

1
t2+1

(1− e−nt(cos n + t sin n)) dλ(t)

=
∫

(0,∞)
1

t2+1
dλ(t)

= arctan t|∞0 = π
2
.

2. (Exercise 13.9, p.131) Let u : R → [0,∞) be a Borel measurable function (there
is a misprint in the book in the definition of u). Denote by S[u] = {(x, y) ∈ R2 :
0 ≤ y ≤ u(x)} and Γ[u] = {(x, u(x)) : x ∈ R}.

(i) Show that S[u] ∈ B(R2).

(ii) Is λ2(S[u]) =
∫

u dλ?

(iii) Show that Γ[u] ∈ B(R2) and that λ2(Γ[u]) = 0.

Proof(i): Define W : R2 → R2 by W (x, y) = (u(x), y). By Theorem 13.10(ii), W is
B(R2)/B(R2) measurable (or simply notice that W−1([a, b)× [c, d)) = u−1([a, b))×
[c, d) ∈ B(R2)). Let U : R2 → R be given by U(x, y) = x−y, then U is B(R2)/B(R)
measurable, and hence the composition U ◦ W (x, y) = U(u(x), y) = u(x) − y is
B(R2)/B(R) measurable. Finally,

S[u] = (R× [0,∞)) ∩ (U ◦W )−1[0,∞) ∈ B(R2).

Proof(ii): The answer is yes. To see that, notice that for each fixed x ∈ R, one has

1S[u](x, y) = 1 ⇔ y ∈ [0, u(x)] ⇔ 1[0,u(x)](y) = 1.

Thus, by Tonelli’s Theorem (or Theorem 13.5), we have

λ2(S[u]) =
∫

R2 1S[u](x, y) dλ2(x, y)

=
∫

R2

∫
R2 1S[u](x, y) dλ(y) dλ(x)

=
∫

R2

∫
R2 1[0,u(x)](y) dλ(y) dλ(x)

=
∫

R2 λ([0, u(x)]) dλ(x)

=
∫

R2 u(x) dλ(x).

2



Proof(iii): We use the same notation as in part (i).

Γ[u] = (U ◦W )−1({0}) ∈ B(R2).

Notice that for each fixed x,

1Γ[u](x, y) = 1 ⇔ y = u(x) ⇔ 1{u(x)}(y) = 1.

Thus,
λ2(S[u]) =

∫
R2 1Γ[u](x, y) dλ2(x, y)

=
∫

R2

∫
R2 1Γ[u](x, y) dλ(y) dλ(x)

=
∫

R2

∫
R2 1{u(x)}(y) dλ(y) dλ(x)

=
∫

R2 λ({u(x)}) dλ(x) = 0.

3. (Exercise 13.11, p.131) Let (X,A, µ) and (Y,B, ν) be two σ-finite measure spaces
such that A 6= P(X), and such that B contains non-empty null-sets.

(i) Show that the product space (X × Y,A ⊗ B, µ × ν) is never complete even if
(X,A, µ) and (Y,B, ν) are both complete.

(ii) Conclude that neither (R2,B(R)⊗B(R), λ×λ) nor the product of the completed
spaces (R2,B∗(R)⊗ B∗(R), λ× λ) are complete.

Proof(i): The proof is done by contradiction. Assume that (X×Y,A⊗B, µ×ν) is
complete. Let Z ∈ P(X) \ A en N ∈ B a ν-null set. By exercise 13.2 (p. 130), the
set X ×N is a µ× ν null-set. Since Z ×N ⊂ X ×N and (X × Y,A⊗ B, µ× ν) is
complete, it follows that Z×N is also a µ×ν null-set and hence is A⊗B measurable.
By Theorem 13.5, the mapping x −→ 1Z×N(x, y) = 1Z(x)1N(y) is A-measurable
(note that 1N(y) is a constant). This implies that 1Z is A-measurable, and hence
Z ∈ A, which is a contradiction. Hence, (X × Y,A⊗ B, µ× ν) is not complete.

Proof(ii): This a direct consequence of part (i).

4. (Exercise 13.12, p.132) Let µ be a bounded measure on ([0,∞),B[0,∞)).

(i) Show that A ∈ B[0,∞) ⊗ P(N) if and only if A = ∪j∈NBj × {j}, where
Bj ∈ B[0,∞).

(ii) Show that there exists a unique measure π on B[0,∞)⊗ P(N) satisfying

π(B × {n}) =

∫
B

e−t t
n

n!
dµ(t).

Proof(i): Clearly any set of the form A = ∪j∈NBj × {j}, where Bj ∈ B[0,∞)
belongs to B[0,∞)⊗P(N). Now suppose A ∈ B[0,∞)⊗P(N). For each k ∈ N, let
Ak = {x ∈ [0,∞) : (x, k) ∈ A}. Notice that 1A(x, k) = 1Ak

(x). By Theorem 13.5,
for any k ∈ N, the function x → 1A(x, k) = 1Ak

(x) is B[0,∞)-measurable, hence
Ak ∈ B[0,∞). Finally, notice that A = ∪k∈NAk × {k}.
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Proof(ii): Let ν be counting measure on (N,P(N)). From example 9.10(ii), for any
non-negative (measurable) function f on N, and for any M ⊂ N one has,∫

M

f dν =
∑
n∈M

f(n).

Consider the product measure µ × ν (note that the underlying measure spaces
are σ-finite). The function f : [0,∞) × N → [0,∞) given by f(t, n) = e−t tn

n!
is

non-negative and measurable (can you see why?). Furthermore, the set function
π : B[0,∞)⊗ P(N) → [0,∞] given by

π(C) =

∫
C

e−t t
n

n!
d(µ× ν)(t, n) =

∫
[0,∞)×N

1Ce−t t
n

n!
d(µ× ν)(t, n),

defines a measure on B[0,∞)⊗ P(N) (exercise 9.5, p.74), and clearly

π(B × {n}) =

∫
B

e−t t
n

n!
dµ(t).

It remains to show that π is unique. Let B ∈ B[0,∞) and M ∈ P(N), by Tonelli’s
Theorem,

π(B ×M) =
∫

B

∫
M

e−t tn

n!
dν(n) dµ(t)

=
∫

B

∑
n∈M e−t tn

n!
dµ(t)

=
∑

n∈M

∫
B

e−t tn

n!
dµ(t) < ∞.

The last inequality follows from the fact that |e−t tn

n!
| ≤ 1 and µ is a bounded measure.

The uniqueness of π follows from a simple application of Theorem 5.7 (note that
[0,∞)× {1, 2, . . . , k} ↗ [0,∞)×N is an exhaustung sequence of finite π measure).
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