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1. (Exercise 13.6, p.131)

(i) Prove that f(o o) e "dA(t) = < for all > 0.
(ii) Use (i) and Fubini’s Theorem to show that

sin x

lim d\(z) = <.

n—00 (O,n) X 2

Proof(i): Since e7* > 0 for all ¢ and z, hence, for each fixed > 0 the sequence
e "Lion(t) /" e "1 (ge). Furthermore, for each n, the function ¢ — e is Rie-
mann integrable on [0, n|. Thus, by Beppo-Levi, and Theorem 11.8(i),

f(O,oo) e_tdi(t) = hmn—>oo f(O,n) e_txd)\(t)
= hmnﬂoo f[O n] e_txd>\<t>

= lim, .o [, e ™dt

: -1 _—t 1
= llmn_>oo 76 x|8 =z

Proof(ii): Note first that the function ®2% is not Lebesgue integrable on (0, o)
(see Remark 11.11 on p.97), so we have to be careful in the application of Fubini’s
Theorem.

Let I = hmn—>oo f(O n) Sinmd/\(l'), then by part (1),

x

n—oo k—o0

I = lim / lim / e " sinxd\(t) d\(x).
(0,n) (0,k)

Since | f(o 5 e~ sinz d\(t)] < |*22| which is Riemann and Lebesgue integrable on
[0,n], hence by Lebesgue Dominated Convergence Therem,

n—oo k—oo

I = lim lim / / e " sinz d\(t) d\(z).
(0,n) J(0,k)

By Fubini’s Theorem, and integration by parts (after replacing the Lebesgue integral
by the Riemann integral), we get

I = lim, . limy_ f(o B f(o o €17 sina dA(z) dA(?)
= limy oo limp—o fig g a5 (1= e ™ (cosn + tsinn)) dA(t).
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Now,

1 2 te "™

11 0N (1 —e™(cosn+tsinn))| < P + 1 € £1((0,00)),
Thus by Lebesgue Dominated Convergence Therem,
1
I = lim (1 — e ™(cosn + tsinn)) dA(¢).

n—o0 [0 o0) 2+ 1
Finally, on (0, 00),

| ! (1 —e™(cosn+tsinn))| < 2 —i—teit
t2+1 241 241

hence again by Lebesgue Dominated Convergence Therem, we get

I = f(O,oo) limy, 0 ﬁ (1 —e ™ (cosn + tsinn)) dA(t)

f(OOO 12+1 d)‘( )

= arctant|y® = 7.

. (Exercise 13.9, p.131) Let v : R — [0, 00) be a Borel measurable function (there
is a misprint in the book in the definition of u). Denote by S[u] = {(z,y) € R? :
0 <y <wu(x)} and T'lu] = {(z,u(x)) : v € R}.

(i) Show that S[ ] € B(R?).
(i) Is )\2( fud/\7
(iii) Show that ['[u] € B(R?) and that A\*(T'[u]) = 0.

Proof(i): Define W : R? — R? by W(xz,y) = (u(z), ) By Theorem 13.10(ii), W is
B(R?)/B(R?) measurable (or simply notice that W=([a,b) x [c,d)) = u~([a,b)) x
[c,d) € B(R?)). Let U : R? — R be given by U(z,y) = x —vy, then U is B( 2)/B(R)
measurable, and hence the composition U o W(z,y) = U(u(z),y) = u(zx) — y is
B(R?)/B(R) measurable. Finally,

S[u] = (R x [0,00)) N (U o W)7[0,00) € B(R?).

Proof(ii): The answer is yes. To see that, notice that for each fixed x € R, one has

Lopj(w,y) =1 <y € [0,u@)] < Lpu@)(y) = 1.
Thus, by Tonelli’s Theorem (or Theorem 13.5), we have

N(S[U]) = [ s, y) dN2(z,y)
= Jpe Jpe Lspu(z,y) dN(y) dX(x)
Jaz Jaz Loy (v) dM(y) dX(x)
= fR2 )]) dX(x)
= [ u(z)d\(z



Proof(iii): We use the same notation as in part (i).
[lu] = (U o W)~ ({0}) € B(R?).
Notice that for each fixed =,

I (z,y) =1 & y=u(r) & lyey) =1

Thus,
N(Su]) = [ Irp(z,y) dXN2(2,y)

fR2 fR2 1F[u}(x> y) d>‘(y) d/\(l’)
= Joe Jre Lu@) (¥) dA(y) dX(z)

= Ja A( ) dA(z) = 0.

. (Exercise 13.11, p.131) Let (X, A, u) and (Y, B, v) be two o-finite measure spaces
such that A # P(X), and such that B contains non-empty null-sets.

(i) Show that the product space (X x Y, A® B, u X v) is never complete even if
(X, A, u) and (Y, B,v) are both complete.

(ii) Conclude that neither (R?, B(R)®@B(R), Ax ) nor the product of the completed
spaces (R? B*(R) ® B*(R), A x \) are complete.

Proof(i): The proof is done by contradiction. Assume that (X XY, AQB, ux v) is
complete. Let Z € P(X)\ Aen N € B a v-null set. By exercise 13.2 (p. 130), the
set X x Nisa puxvnull-set. Since Z x N C X x N and (X x Y, A® B, x v) is
complete, it follows that Z x N is also a u X v null-set and hence is A® B measurable.
By Theorem 13.5, the mapping © — 1zyxn(2z,y) = 1z(2)1n(y) is A-measurable
(note that 1y(y) is a constant). This implies that 15 is A-measurable, and hence
Z € A, which is a contradiction. Hence, (X x Y, A® B, 1 X v) is not complete.

Proof(ii): This a direct consequence of part (i).
. (Exercise 13.12, p.132) Let p be a bounded measure on ([0, c0), B[0, 0)).

(i) Show that A € B[0,00) ® P(N) if and only if A = U;enB; x {j}, where
Bj S B[O, OO)

(ii) Show that there exists a unique measure 7 on B[0, 00) ® P(N) satisfying
s
w(B x {n}) = [ &% dute).
B

Proof(i): Clearly any set of the form A = U,enB; % {j}, where B; € B0, c0)
belongs to B0, 00) ® P(N). Now suppose A € B[0,00) ® P(N). For each k € N, let
Ap = {z € [0,00) : (x,k) € A}. Notice that 14(z, k) = 14,(z). By Theorem 13.5,
for any k € N, the function x — 1(x, k) = 14,(x) is B0, c0)-measurable, hence
Ay, € BJ0,00). Finally, notice that A = UgenAr x {k}.
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Proof(ii): Let v be counting measure on (N, P(N)). From example 9.10(ii), for any
non-negative (measurable) function f on N, and for any M C N one has,

/Mfdv =3 fn).

neM

Consider the product measure p X v (note that the underlying measure spaces
are o-finite). The function f : [0,00) x N — [0,00) given by f(t,n) = e™'L is
non-negative and measurable (can you see why?). Furthermore, the set function

7 : B[0,00) ® P(N) — [0, 00] given by
—ttn —ttn
m(C) = | e —d(uxv)(t,n)= Lee™ — d(p x v)(t,n),
c [0,00) xN n:.

defines a measure on B0, 00) ® P(N) (exercise 9.5, p.74), and clearly

(B x {n}) = /Be_ti—n!du(t).

It remains to show that 7 is unique. Let B € B[0,00) and M € P(N), by Tonelli’s
Theorem,

T(Bx M) = [, [, e "5 dv(n)du(t)
= fB ZneM eit%dﬂ(t)

= > em fB e‘t% du(t) < oo.

The last inequality follows from the fact that |e™'£;| < 1 and y is a bounded measure.

The uniqueness of 7 follows from a simple application of Theorem 5.7 (note that
[0,00) x {1,2,...,k} /[0,00) x N is an exhaustung sequence of finite 7 measure).



