Measure and Integration 2006-Selected Solutions Chapter 4

1. (Exercise 4.11, p.29) Let λ be the one-dimensional Lebesgue measure (see def.4.8, p.27)
(i) Show that for all $x \in \mathbb{R}$ the set $\{x\}$ is a Borel set with $\lambda(\{x\})=0$.
(ii) Prove that \mathbb{Q} is a Borel set and that $\lambda(\mathbb{Q})=0$.
(iii) Show that the uncountable union of null sets need not be a non-set.

Proof (i) Notice that $\{x\}=\bigcap_{n \in \mathbb{N}}[x-1 / n, x+1 / n)$. Since $[x-1 / n, x+1 / n)$ is a
Borel set for all n, and the Borel σ-algebra is closed under countable intersection, it follows that $\{x\}$ is a Borel set. Further, $\lambda(\{x\}) \leq \lambda([x-1 / n, x+1 / n))=2 / n$ for all n. Taking limits we see that $\lambda(\{x\})=0$.

Proof (ii) $\mathbb{Q}=\bigcup_{q \in \mathbb{Q}}\{q\}$ is a countable union of Borel sets (see part (i)). Since the Borel σ-algebra is closed under countable unions, it follows that \mathbb{Q} is Borel measurable. Now, $\lambda(\mathbb{Q}) \leq \sum_{q \in \mathbb{Q}} \lambda(\{q\})=0$.

Proof (iii) Consider $[0,1]=\cup_{r \in \mathbb{R}}\{r\}$ which is an uncountable union of null sets (since $\lambda(\{r\})=0$), however $\lambda([0,1])=1$.
2. (Exercise 4.13, p.21). Let (X, \mathcal{A}, μ) be a measure space.
(i) Show that $\mathcal{A}^{*}=\{A \cup N: A \in \mathcal{A}, N$ is a subset of some \mathcal{A}-measurable null set $\}$ is a σ-algebra containing \mathcal{A}.
(ii) Define $\bar{\mu}$ on \mathcal{A}^{*} by $\bar{\mu}\left(A^{*}\right)=\bar{\mu}(A \cup N)=\mu(A)$. Show that $\bar{\mu}$ is well-defined.
(iii) Show that $\bar{\mu}$ is a measure extending μ, i.e. $\bar{\mu}(A)=\mu(A)$ for all $A \in \mathcal{A}$.
(iv) Show that $\left(X, \mathcal{A}^{*}, \bar{\mu}\right)$ is complete.
(v) Show that $\mathcal{A}^{*}=\left\{A^{*} \subset X: \exists A, B \in \mathcal{A}, A \subset A^{*} \subset B, \mu(B \backslash A)=0\right\}$.

Proof (i) Clearly $X \in \mathcal{A}^{*}$ since $X=X \cup \emptyset, X, \emptyset \in \mathcal{A}$ and $\mu(\emptyset)=0$. Now let $\left(B_{n}\right)_{n} \subset \mathcal{A}^{*}$. Then there exist $\left(A_{n}\right)_{n},\left(C_{n}\right)_{n} \subset \mathcal{A}$ with $\mu\left(C_{n}\right)=0$ such that $B_{n}=A_{n} \cup N_{n}$ for some $N_{n} \subset C_{n}$. We want to show that $\bigcup_{n} B_{n} \in \mathcal{A}^{*}$. Let $A=\bigcup_{n} A_{n}, C=\bigcup_{n} C_{n}$ and $N=\bigcup_{n} C_{n}$. Then, $\bigcup_{n} B_{n}=A \cup N$ with $A \in \mathcal{A}$ and $N \subset C$ with $C \in \mathcal{A}$ satisfies $\mu(C)=0$. Hence, $\bigcup_{n} B_{n} \in \mathcal{A}^{*}$. Now, let $B \in \mathcal{A}^{*}$.

Then $B=A \cup N$ with $A \in \mathcal{A}$ and $N \subset C$ for some $C \in \mathcal{A}$ with $\mu(C)=0$. Notice that $A^{c} \cap C^{c} \subset A^{c} \cap N^{c}=B^{c}$. Thus, $B^{c}=\left(A^{c} \cap C^{c}\right) \cup\left[\left(A^{c} \cap N^{c}\right) \backslash\left(A^{c} \cap C^{c}\right)\right]$ with $A^{c} \cap C^{c} \in \mathcal{A},\left(A^{c} \cap N^{c}\right) \backslash\left(A^{c} \cap C^{c}\right)=C \cap A^{c} \cap N^{c} \subset C$ and $\mu(C)=0$. Thus, $B^{c} \in \mathcal{A}^{*}$. Therefore, \mathcal{A}^{*} is a σ-algebra. Finally, for each $A \in \mathcal{A}$, one has $A \cup \emptyset$ hence, $\mathcal{A} \subset \mathcal{A}^{*}$.

Proof (ii) Suppose that $A^{*} \in \mathcal{A}^{*}$ can be written as $A^{*}=A \cup N=B \cup M$ with $A, B \in \mathcal{A}$ and $N \subset C, M \subset D$ with $C, D \in \mathcal{A}$ with $\mu(C)=\mu(D)=0$. We need to show that $\mu(A)=\mu(B)$. First note that $A \backslash B \subset A^{*} \backslash B \subset M \subset D$. Hence $\mu(A \backslash B)=0$. Now $\mu(A)=\mu(A \cap B)+\mu(A \backslash B)=\mu(A \cap B)$. Similarly, $B \backslash A \subset N \subset C$ so that $\mu(B \backslash A)=0$. Then, $\mu(B)=\mu(B \cap A)+\mu(B \backslash A)=\mu(B \cap A)=\mu(A)$.

Proof (iii) If $A \in \mathcal{A}$, then $A=A \cup \emptyset$ so by part (ii), $\bar{\mu}(A)=\mu(A)$. We show that $\bar{\mu}$ is a measure. Clearly, $\bar{\mu}(\emptyset)=0$. Now let $\left(A_{n}^{*}\right)$ be a disjoint sequence in \mathcal{A}^{*}. Then, $A_{n}^{*}=A_{n} \cup N_{n}$ with $A_{n} \in \mathcal{A}$ and N_{n} is a subset of an \mathcal{A}-measurable null set. By definition $\bar{\mu}\left(A_{n}^{*}\right)=\mu\left(A_{n}\right)$. Since $\bigcup_{n} A_{n}^{*}=\bigcup_{n} A_{n} \cup \bigcup_{n} N_{n}$ with $\bigcup_{n} A_{n} \in \mathcal{A}$ and $\bigcup_{n} N_{n}$ is a subset of a null set, then

$$
\bar{\mu}\left(\bigcup_{n} A_{n}^{*}\right)=\mu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)=\sum_{n} \bar{\mu}\left(A_{n}^{*}\right) .
$$

Thus, $\bar{\mu}$ is σ-additive, hence $\bar{\mu}$ is a measure.
Proof (iv) Let $M \in \mathcal{A}^{*}$ with $\bar{\mu}(M)=0$. Let $C \subset M$ be any subset of M, we need to show that $C \in \mathcal{A}^{*}$, from which it will immediately follow that $\bar{\mu}(C)=0$. Since $M \in \mathcal{A}^{*}$, then $M=A \cup N$ with $A \in \mathcal{A}, N \subset N^{\prime}, N^{\prime} \in \mathcal{A}$ and $\mu\left(N^{\prime}\right)=0$. Then, $\mu(A)=\bar{\mu}(M)=0$, and $C \subset M=A \cup N \subset A \cup N^{\prime} \in \mathcal{A}$. Furthermore, $\mu\left(A \cup N^{\prime}\right) \leq \mu(A)+\mu\left(N^{\prime}\right)=0$. Hence, C is a subset of an \mathcal{A}-measurable μ-null set. Since $C=\emptyset \cup C$ and $\emptyset \in \mathcal{A}$, it follows that $C \in \mathcal{A}^{*}$. Thus, $\left(X, \mathcal{A}^{*}, \bar{\mu}\right)$ is complete.

Proof (v) Let $\mathcal{B}=\left\{A^{*} \subset X: \exists A, B \in \mathcal{A}, A \subset A^{*} \subset B, \mu(B \backslash A)=0\right\}$. We need to show that $\mathcal{A}^{*}=\mathcal{B}$. Let $A^{*} \in \mathcal{B}$, then there exist $A, B \in \mathcal{A}$ such that $A \subset A^{*} \subset B$ and $\mu(B \backslash A)=0$. Notice that $A^{*}=A \cup\left(A^{*} \backslash A\right)$ with $A \in \mathcal{A}, A^{*} \backslash A \subset(B \backslash A) \in \mathcal{A}$ and $\mu(B \backslash A)=0$. This implies that $A^{*} \in \mathcal{A}^{*}$, and hence $\mathcal{B} \subset \mathcal{A}^{*}$. Conversely, suppose $A^{*} \in \mathcal{A}^{*}$. Then, $A^{*}=A \cup N$ with $A \in \mathcal{A}$ and $N \subset N^{\prime} \in \mathcal{A}$ satisfying $\mu\left(N^{\prime}\right)=0$. Set $B=A \cup N^{\prime}$. Then $B \in \mathcal{A}, A \subset A^{*} \subset B$ and $\mu(B \backslash A) \leq \mu\left(N^{\prime}\right)=0$. Thus, $A^{*} \in \mathcal{B}$ and $\mathcal{A}^{*} \subset \mathcal{B}$. Therefore, $\mathcal{A}^{*}=\mathcal{B}$.

