Measure and Integration 2007-Selected Solutions Chapter 11

1. (p.100, exercise 11.1) Let (X, \mathcal{A}, μ) be a measure space, and $\left(u_{j}\right)$ a sequence of measrable real valued functions such that $\lim _{j \rightarrow \infty} u_{j}(x)=u(x)$ for all $x \in X$. Suppose that $\left|u_{j}\right| \leq g$ for some measurable function g such that $g^{p} \in \mathcal{L}_{+}^{1}, p>0$. Show that $\lim _{j \rightarrow \infty} \int\left|u_{j}-u\right|^{p} d \mu=0$.

Proof: First notice that for any $a, b \in \mathbb{R}$, one has

$$
|a-b|^{p} \leq(|a|+|b|)^{p} \leq(2 \max (|a|,|b|))^{p}=2^{p} \max \left(|a|^{p},|b|^{p}\right) \leq 2^{p}\left(|a|^{p}+|b|^{p}\right) .
$$

Applying this fact to our sequence, we see that $\left|u_{j}(x)-u(x)\right|^{p} \leq 2^{p} g^{p}(x)$ (note that $\left|u_{j}\right| \leq g$ implies $|u| \leq g$), and g^{p} is a non-negative integrable function. Furthermore, $\lim _{j \rightarrow \infty}\left|u_{j}-u\right|^{p}=0$, hence by Lebesgue Dominated Convergence Theorem,

$$
\lim _{j \rightarrow \infty} \int\left|u_{j}-u\right|^{p} d \mu=\int \lim _{j \rightarrow \infty}\left|u_{j}-u\right|^{p} d \mu=0
$$

2. (p.100, exercise 11.3) Let $\left(f_{k}\right),\left(g_{k}\right)$ and $\left(G_{k}\right)$ be sequences of integrable functions on a measure space (X, \mathcal{A}, μ). If
(i) $\lim _{k \rightarrow \infty} f_{k}(x)=f(x), \lim _{k \rightarrow \infty} g_{k}(x)=g(x)$ and $\lim _{k \rightarrow \infty} G_{k}(x)=G(x)$ for all $x \in X$,
(ii) $g_{k}(x) \leq f_{k}(x) \leq G_{k}(x)$ for all $k \geq 1$ and all $x \in X$,
(iii) $\lim _{k \rightarrow \infty} \int g_{k} d \mu=\int g d \mu, \lim _{k \rightarrow \infty} \int G_{k} d \mu=\int G d \mu<$ and both $\int g d \mu$ and $\int G d \mu$ are finite,
then, $\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu$ and $\int f d \mu$ is finite.
Proof: By assumption $0 \leq f_{k}-g_{k} \rightarrow f-g$ and $0 \leq G_{k}-f_{k} \rightarrow G-f$. By Fatou's Lemma we have

$$
\begin{aligned}
\int(f-g) d \mu & =\int \lim _{k \rightarrow \infty}\left(f_{k}-g_{k}\right) d \mu \\
& =\int \liminf _{k \rightarrow \infty}\left(f_{k}-g_{k}\right) d \mu \\
& \leq \liminf _{k \rightarrow \infty} \int\left(f_{k}-g_{k}\right) d \mu \\
& \leq \liminf _{k \rightarrow \infty} \int f_{k} d \mu-\limsup _{k \rightarrow \infty} \int g_{k} d \mu \\
& =\liminf _{k \rightarrow \infty} \int f_{k} d \mu-\int g d \mu .
\end{aligned}
$$

Subtracting $\int g d \mu(<\infty)$ from both sides of the inequality, we get $\int f d \mu \leq \liminf _{k \rightarrow \infty} \int f_{k} d \mu$. On the other hand,

$$
\begin{aligned}
\int(G-f) d \mu & =\int \lim _{k \rightarrow \infty}\left(G_{k}-f_{k}\right) d \mu \\
& =\int \liminf _{k \rightarrow \infty}\left(G_{k}-f_{k}\right) d \mu \\
& \leq \liminf _{k \rightarrow \infty} \int\left(G_{k}-f_{k}\right) d \mu \\
& \leq \liminf _{k \rightarrow \infty} \int G_{k} d \mu-\lim \sup _{k \rightarrow \infty} \int f_{k} d \mu \\
& =\int G d \mu-\lim \sup _{k \rightarrow \infty} \int f_{k} d \mu .
\end{aligned}
$$

Subtracting $\int G d \mu(<\infty)$ from both sides of the inequality we get $\limsup _{k \rightarrow \infty} \int f_{k} d \mu \leq$ $\int f d \mu \leq \liminf _{k \rightarrow \infty} \int f_{k} d \mu$. Thus, $\int f d \mu=\lim _{k \rightarrow \infty} \int f_{k} d \mu$ and $\int g d \mu \leq \int f d \mu \leq$ $\int G d \mu$, hence $\int f d \mu$ is finite.
3. (p.100, exercise 11.4) Let (X, \mathcal{A}, μ) be a measure space, and let $\left(g_{n}\right)$ be a sequence of μ-integrable functions on X such that $\sum_{n=1}^{\infty} \int_{\mid} g_{n} \mid d \mu<\infty$. Show that $\sum_{n=1}^{\infty} g_{n}$ is finite μ a.e, and

$$
\int \sum_{n=1}^{\infty} g_{n} d \mu=\sum_{n=1}^{\infty} \int g_{n} d \mu .
$$

proof (b): By part Corollary 9.9, $\int \sum_{n=1}^{\infty}\left|g_{n}\right| d \mu=\sum_{n=1}^{\infty} \int\left|g_{n}\right| d \mu<\infty$, hence $\sum_{n=1}^{\infty}\left|g_{n}\right|$ is μ-integrable. We show that $u=\sum_{n=1}^{\infty}\left|g_{n}\right|$ is finite μ a.e. (see also the proof of Corollary 10.13). Let $N=\{x \in X: u(x)=\infty\}$. Then $N=\bigcap_{n=1}^{\infty}\{u \geq n\}$. Since the sequence of measurable sets $\{u \geq n\}$ is decreasing and by the Markov inequality each has finite measure, then $\mu(N)=\lim _{n \rightarrow \infty} \mu(\{u \geq$ $n\})=\lim _{n \rightarrow \infty} \frac{1}{n} \int u d \mu=0$. Thus, $u=\sum_{n=1}^{\infty}\left|g_{n}\right|$ is finite μ a.e. Since $\left|\sum_{n=1}^{\infty} g_{n}\right| \leq$ $\sum_{n=1}^{\infty}\left|g_{n}\right|$, it follows that $\sum_{n=1}^{\infty} g_{n}$ is finite μ a.e. Let $h_{n}=\sum_{m=1}^{n} g_{m}$, then $\left(h_{m}\right)$ converges to $\sum_{n=1}^{\infty} g_{n} \mu$ a.e. Furthermore, $\left|h_{n}\right| \leq \sum_{n=1}^{\infty}\left|g_{n}\right|$, thus by the Dominated Convergence Theorem,

$$
\sum_{n=1}^{\infty} \int g_{n} d \mu=\lim _{n \rightarrow \infty} \int h_{n} d \mu=\int \lim _{n \rightarrow \infty} h_{n} d \mu=\int \sum_{n=1}^{\infty} g_{n} d \mu .
$$

4. (p.100, exercise 11.6) Give an example of a sequence $\left(u_{j}\right)$ of integrable functions such that $u_{j}(x) \rightarrow u(x)$ for all x where u is an integrable function, but $\lim _{j \rightarrow \infty} \int u_{j} d \mu \neq \int u d \mu$. Why doesn't this contradict the Lebesgue Dominated Convergence Theorem?

Proof: Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ with $\mathcal{B}(\mathbb{R})$ the Borel σ-algebra, and λ the Lebesgue measure. Let $u_{j}(x)=j \mathbf{1}_{(0,1 / j)}(x), j \geq 1$. Clearly, $\lim _{j \rightarrow \infty} u_{j}(x)=0$ for all $x \in \mathbb{R}$, and

$$
\lim _{j \rightarrow \infty} \int u_{j} d \lambda=\lim _{j \rightarrow \infty} j \lambda((0,1 / j))=\lim _{j \rightarrow \infty} j \frac{1}{j}=1
$$

while

$$
\int \lim _{j \rightarrow \infty} u_{j} d \lambda=\int 0 d \lambda=0 .
$$

This does not contradict the Lebesgue Dominated Convergence Theorem because the sequence $\left(u_{j}\right)$ is not bounded by an integrable function.
5. (Exercise 11.7 p. 101) Let μ be a measure on $\left(\mathbb{R}, \mathcal{B}(\mathbb{R})\right.$, and suppose $u \in \mathcal{L}^{1}(\mu)$. Define a function $I:(0, \infty) \rightarrow R$ by $I(x)=\int_{(0, x)} u(t) d \mu(t)=\int \mathbf{1}_{(0, x)}(t) u(t) d \mu(t)$. Show that if μ has no atoms (i.e. $\mu(\{x\})=0$ for all x), then I is continuous.

Proof: Suppose μ has no atoms. We will show that $\lim _{x_{n} / x} I\left(x_{n}\right)=I\left(x^{-}\right)=$ $I\left(x^{+}\right)=\lim _{y_{n} \backslash x} I\left(y_{n}\right)$. Note that if $0<x_{n} \nearrow x$ and $0<y_{n} \searrow x$, then $\lim _{n \rightarrow \infty} \mathbf{1}_{\left(0, x_{n}\right)} u=$
$\mathbf{1}_{(0, x)} u$, and $\lim _{n \rightarrow \infty} \mathbf{1}_{\left(0, y_{n}\right)} u=\mathbf{1}_{(0, x]} u$. Furthermore, $\left|\mathbf{1}_{\left(0, y_{n}\right)} u\right| \leq|u|$ and $\left|\mathbf{1}_{\left(0, x_{n}\right)} u\right| \leq$ $|u|$ and $|u| \in \mathcal{L}^{1}(\mu)$. By the Lebesgue dominated convergence theorem,

$$
\begin{aligned}
I\left(x^{+}\right)-I\left(x^{-}\right) & =\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(0, x_{n}\right)}(t) u(t) d \mu(t)-\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(0, y_{n}\right)}(t) u(t) d \mu(t) \\
& =\int \mathbf{1}_{(0, x)}(t) u(t) d \mu(t)-\int \mathbf{1}_{(0, x])}(t) u(t) d \mu(t) \\
& =\int \mathbf{1}_{\{x\}} u(t) d \mu(t) \\
& =u(x) \mu(\{x\})=0 .
\end{aligned}
$$

Thus I is continuous at x for all $x>0$.

