Hand-in exercises for the course Foundations of Mathematics

Jaap van Oosten

November 2023-January 2024

1 Exercises

Exercise 1 [To be handed in November 21, 2023]
a) (4 pts) Show that \mathbb{N} can be written as a disjoint union $\bigcup_{i \in \mathbb{N}} C_{i}$ with all C_{i} infinite (here, "disjoint union" means that $C_{i} \cap C_{j}=\emptyset$ whenever $i \neq j$).
b) (6 pts) We write $\Delta(X, Y)$ (the "symmetric difference") for the set

$$
(X-Y) \cup(Y-X)
$$

Show that for every sequence $\left(A_{n} \mid n \in \mathbb{N}\right)$ of subsets of \mathbb{N}, there is a subset B of \mathbb{N} such that for all $n, \Delta\left(B, A_{n}\right)$ is infinite.

Exercise 2 [To be handed in November 28,2023] By $\mathcal{P}(\mathbb{R})$ we denote, as usual, the power set of \mathbb{R}. Let P be the poset of all pairs (A, g) such that $A \subseteq \mathbb{R}$ and $g: A \rightarrow \mathcal{P}(\mathbb{R})$ is a function and the following conditions hold:
i) If $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$ then $g\left(a_{1}\right) \cap g\left(a_{2}\right)=\emptyset$.
ii) $0 \in A$ and $0 \in g(0)$.
iii) If $a_{1}, a_{2} \in A, r_{1} \in g\left(a_{1}\right)$ and $r_{2} \in g\left(a_{2}\right)$, then $a_{1}+a_{2} \in A$ and $r_{1}+r_{2} \in$ $g\left(a_{1}+a_{2}\right)$.

The set P is preordered by: $(A, g) \leq(B, h)$ if $A \subseteq B$ and for all $a \in A$, $g(a) \subseteq h(a)$.
a) (4 pts) Show that the poset P satisfies the condition of Zorn's Lemma, that is: every chain in P has an upper bound. Conclude that P has a maximal element.
b) (4 pts$)$ Let (A, g) be a maximal element of P. Prove that the set A is closed under addition and that, if $r \in A$, also $-r \in A$.
c) $(2 \mathrm{pts})$ Let (A, g) be a maximal element of P. Show that $\bigcup_{a \in A} g(a)=\mathbb{R}$ and there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)=0, f(x+y)=f(x)+f(y)$ and for all $x \in \mathbb{R}, x \in g(f(x))$.

Exercise 3 [To be handed in December 5, 2023] This is Exercise 45 from the book:

Let L be a set. Write $\mathcal{P}^{*}(L)$ for the set of nonempty subsets of L. Suppose that $h: \mathcal{P}^{*}(L) \rightarrow L$ is a function such that the following two conditions are satisfied:
i) For each nonempty family $\left\{A_{i} \mid i \in I\right\}$ of elements of $\mathcal{P}^{*}(L)$, we have

$$
h\left(\bigcup_{i \in I} A_{i}\right)=h\left(\left\{h\left(A_{i}\right) \mid i \in I\right\}\right)
$$

ii) For each $A \in \mathcal{P}^{*}(L), h(A) \in A$.

Show that there is a unique relation \leq on L, which well-orders L, and is such that for each nonempty subset A of L the element $h(A)$ is the least element of A.

Exercise 4 [To be handed in December 12, 2023] Two L-structures M and N are said to be elementarily equivalent (notation: $M \equiv N$) if they satisfy the same L-sentences: for any L-sentence ϕ we have $M \models \phi$ if and only if $N \models \phi$.

Let $L=\{<\}$ be the language of (strict) posets. Let P be a poset such that for every $n \in \mathbb{N}$ there is an ascending sequence $p_{1}<p_{2}<\cdots<p_{n}$ of length n. Show that there is a poset Q with the properties:
i) $\quad P \equiv Q$.
ii) In Q there is an infinite ascending sequence $q_{1}<q_{2}<\cdots$.

Exercise 5 [To be handed in January 16, 2024] Demonstrate by constructing proof trees:
i) $\quad(5 \mathrm{pts})(\phi \rightarrow \exists x \psi) \vdash \exists x(\phi \rightarrow \psi)$ (here it is assumed that the variable x does not occur in ϕ.
ii) $(5 \mathrm{pts})(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$.

Exercise 6 [To be handed in January 23, 2024] This is Exercise 129 from the book:
Let L be a language, T an L-theory and L^{\prime} an extension of the language L.
a) (4 pts) Show that the poset of all L^{\prime}-theories which are conservative extensions of T, ordered by inclusion, satisfies the hypothesis of Zorn's Lemma.
b) (6 pts) By Zorn's Lemma, there is a maximal L^{\prime}-theory U which is conservative over T. Show that for every L^{\prime}-sentence $\psi \notin U$, there are an L-sentence ϕ and an L^{\prime}-sentence $\gamma \in U$ such that $\gamma \wedge \psi \models \phi$ and $T \not \vDash \phi$.

2 Solutions

Exercise 1 a): according to the proof of Proposition 1.1.4ii) there is a bijective function $\psi: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$. Let $\pi_{0}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be the first projection. Define C_{i} to be $\left\{n \in \mathbb{N} \mid \pi_{0}(\psi(n))=i\right\}$. Clearly, C_{i} is infinite, $C_{i} \cap C_{j}=\emptyset$ for $i \neq j$ and $\bigcup_{i \in \mathbb{N}} C_{i}=\mathbb{N}$.
b): Given the sequence $\left(A_{n} \mid n \in \mathbb{N}\right)$, let χ_{n} be the characteristic function of A_{n}. We use the sequence ($C_{n} \mid n \in \mathbb{N}$) from part a). We define the set B by its characteristic function χ :

$$
\chi(k)=1-\chi_{n}(k)
$$

where n is the unique number such that $k \in C_{n}$. We see that $C_{n} \subseteq \Delta\left(B, A_{n}\right)$ (note that $x \in \Delta\left(B, A_{n}\right)$ if and only if exactly one of $\left\{\chi(x), \chi_{n}(x)\right\}$ equals 1), so this set is infinite for all n.

Exercise 2 a): First we observe that the pair (A, g) with $A=\{0\}$ and $g(0)=$ $\{0\}$ is an element of P, which is therefore nonempty; so the empty chain has an upper bound. Now suppose $C=\left(A_{i}, g_{i}\right)_{i \in I}$ is a nonempty chain in P. We define:

$$
A-\bigcup_{i \in I} A_{i} \quad g(a)=\bigcup_{a \in A_{i}} g_{i}(a) \quad \text { for } a \in A
$$

We check that (A, g) satisfies conditions i)-iii), for then it will be an upper bound for C, as is immediate.
i) Suppose $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$. Then

$$
\begin{aligned}
g\left(a_{1}\right) \cap g\left(a_{2}\right) & =\left(\bigcup_{a_{1} \in A_{i}} g_{i}\left(a_{1}\right)\right) \cap\left(\bigcup_{a_{2} \in A_{j}} g_{j}\left(a_{2}\right)\right) \\
& =\bigcup_{a_{1} \in A_{i}, a_{2} \in A_{j}} g_{i}\left(a_{1}\right) \cap g_{j}\left(a_{2}\right)
\end{aligned}
$$

Since C is a chain, we may suppose $\left(A_{i}, g_{i}\right) \leq\left(A_{j}, g_{j}\right)$. Then $g_{i}\left(a_{1}\right) \cap$ $g_{j}\left(a_{2}\right) \subseteq g_{j}\left(a_{1}\right) \cap g_{j}\left(a_{2}\right)=\emptyset$. So condition i) holds.
ii) this condition holds by nonemptiness of C.
iii) If $a_{1}, a_{2} \in A, r_{1} \in g\left(a_{1}\right), r_{2} \in g\left(a_{2}\right)$ then again by the chain property of C, we have $a_{1}, a_{2} \in A_{i}, r_{1} \in g_{i}\left(a_{1}\right), r_{2} \in g_{i}\left(a_{2}\right)$ for some $i \in I$, so $r_{1}+r_{2} \in g_{i}\left(a_{1}+a_{2}\right) \subseteq g\left(a_{1}+a_{2}\right)$ and on the way we have checked that $a_{1}+a_{2} \in A$. We conclude that $(A, g) \in P$.

We conclude by Zorn's Lemma that P has a maximal element.
b): Suppose $a_{1}, a_{2} \in A$ but $a_{1}+a_{2} \notin A$. Then by condition iii) for $A, g\left(a_{1}\right)$ and $g\left(a_{2}\right)$ cannot both be nonempty. This means that if we define $\left(A^{\prime}, g^{\prime}\right)$ as follows:

$$
A^{\prime}=A \cup\left\{a_{1}+a_{2}\right\} \quad g^{\prime}(a)=\left\{\begin{aligned}
g(a) & \text { if } a \in A \\
\emptyset & \text { if } a=a_{1}+a_{2}
\end{aligned}\right.
$$

then conditions i)-iii) are satisfied, so $\left(A^{\prime}, g^{\prime}\right)$ is an element of P and a proper extension of (A, g), which violates the maximailty of the latter. We conclude that $a_{1}+a_{2} \in A$.

The second statement is proved by a similar trick: suppose $a_{0} \in A$ but $-a_{0} \notin A$. Let $A^{\prime}=A \cup\left\{-a_{0}\right\}, g^{\prime}(a)=g(a)$ for $a \in A$ and $g\left(-a_{0}\right)=\emptyset$. Again, conditions i)-iii) hold, so $\left(A^{\prime}, g^{\prime}\right) \in P$ and $\left(A^{\prime}, g^{\prime}\right)$ extends (A, g); again violating maximality.

In fact, we could have shown directly that $A=\mathbb{R}$, from which the two statements to be proved, follow at once. Indeed, if $\left(\mathbb{R}, g^{\prime}\right)$ is such that $g^{\prime}(a)=$ $g(a)$ for $a \in A$, and $g^{\prime}(a)=\emptyset$ otherwise, then it is easy to see that $\left(\mathbb{R}, g^{\prime}\right)$ is an element of P which extends (A, g). By maximality we must have equality, whence $A=\mathbb{R}$.
c) This part of the exercise turned out to be far more laborious than usual for a hand-in exercise; which is why we decided to award 5 points to parts a) and b) each, and give up to 2 bonus points for the students who had done (a substantial part of) c).

Assume (A, g) is a maximal element of P. Let us first see that if $Z=$ $\bigcup_{a \in A} g(a)$ is equal to \mathbb{R}, then there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)=0$, $f(x+y)=f(x)+f(y)$ and for all $x \in \mathbb{R}, x \in g(f(x))$. This is almost trivial: define, for $x \in Z, f(x)$ to be the unique a such that $x \in g(a)$ (unicity of a follows from condition i) of elements of P). Conditions ii) and iii) now imply the required properties of the function f. Note that we always have such a function $f: Z \rightarrow \mathbb{R}$ satisfying $f(0)=0$ and $f(x+y)=f(x)+f(y)$, by the same definition.

Now for the proof that $Z=\mathbb{R}$. First we prove:
Claim 1 The set Z is closed under the function $x \mapsto-x$.
Proof: Assume $x_{0} \in Z$ but $-x_{0} \notin Z$. Let a_{0} be such that $x_{0} \in g\left(a_{0}\right)$. Define the function $g^{\prime}: A \rightarrow \mathbb{R}$ by

$$
g^{\prime}(a)=\left\{x-x_{0} \mid x \in g\left(a+a_{0}\right)\right\}
$$

We check that $\left(A, g^{\prime}\right)$ is an element of P which satisfies $(A, g) \leq\left(A, g^{\prime}\right)$. Since $-x_{0} \in g^{\prime}\left(-a_{0}\right)$ (because $\left.0 \in g(0)\right)$ we then have $(A, g)<\left(A, g^{\prime}\right)$, which violates the maximality of (A, g). We check conditions i)-iii) for $\left(A, g^{\prime}\right)$, as well as
iv): $g(a) \subseteq g^{\prime}(a)$, for all $a \in A$.
i): Suppose $x-x_{0} \in g^{\prime}(a) \cap g^{\prime}\left(a^{\prime}\right)$. Then $x \in g\left(a+a_{0}\right)$ and $x \in g\left(a^{\prime}+a_{0}\right)$ so by i) for $(A, g), a=a^{\prime}$. We see that (A, g^{\prime}) satisfies i).
ii): $g^{\prime}(0)=\left\{x-x_{0} \mid x \in g\left(a_{0}\right)\right\}$. Since $x_{0} \in g\left(a_{0}\right)$ we have $0=x_{0}+\left(-x_{0}\right) \in g^{\prime}(0)$, so this checks ii).
iii): Suppose $x-x_{0} \in g^{\prime}(a), x^{\prime}-x_{0} \in g^{\prime}\left(a^{\prime}\right)$. We need to see that $x+x^{\prime}-2 x_{0} \in$ $g^{\prime}\left(a+a^{\prime}\right)$. We have $x \in g\left(a+a_{0}\right), x^{\prime} \in g\left(a^{\prime}+a_{0}\right)$. By iii) for (A, g) this gives

$$
x+x^{\prime} \in g\left(a+a^{\prime}+2 a_{0}\right)
$$

Applying the definition of g^{\prime} twice, we get: $x+x^{\prime}-x_{0} \in g^{\prime}\left(a+a^{\prime}+a_{0}\right)$, whence $x+x^{\prime}-2 x_{0} \in g^{\prime}\left(a+a^{\prime}\right)$. Which is what we set out to show.
iv): If $x-x_{0} \in g(a)$, then $x=\left(x-x_{0}\right)+x_{0} \in g\left(a+a_{0}\right)$, so $x-x_{0} \in g^{\prime}(a)$. This shows $g(a) \subseteq g^{\prime}(a)$.
This proves Claim 1. Now we turn to the full result:

Claim 2: $Z=\mathbb{R}$.
Proof: By maximality of (A, g) we may assume that $Z=\bigcup_{a \in A} g(a)$ is closed under addition and the function $x \mapsto-x$. Now suppose $x_{0} \in \mathbb{R}-Z$. We consider two cases:
Case 1: For no natural number $k>0$ we have $k x_{0} \in Z$. We consider the set

$$
Z^{\prime}=\left\{x+k x_{0} \mid x \in Z, k \in \mathbb{Z}\right\}
$$

Note that every element of Z^{\prime} can be uniquely expressed as $x+k x_{0}$, for if $x+k x_{0}=x^{\prime}+k^{\prime} x_{0}$ then we would have $\left(k-k^{\prime}\right) x_{0} \in Z$, which by our assumption can only happen if $k=k^{\prime}$ and therefore $x=x^{\prime}$. Note, that here we use the fact, previously proved, that Z is closed under the function $x \mapsto-x$.

Choose $\alpha \in \mathbb{R}$ arbitrary, let $A^{\prime}=\{a+k \alpha \mid a \in A\}$ and define $g^{\prime}(a+k \alpha)=$ $\left\{x+k x_{0} \mid x \in g(a)\right\}$. We see that $\left(A^{\prime}, g^{\prime}\right)$ extends (A, g) in P, and arrive at the familiar contradiction.
Case 2: For some $m \in \mathbb{N}_{>0}$ we have $m x_{0} \in Z$, let m be minimal with this property. Define

$$
Z^{\prime}=\left\{x+k x_{0} \mid x \in Z, k \in \mathbb{N}, 0<k<m\right\}
$$

Again, every element of Z^{\prime} can be uniquely written as $x+k x_{0}$ for $x \in Z$ and $0<k<m$. Pick a_{0} such that $m x_{0} \in g\left(a_{0}\right)$. Let

$$
A^{\prime}=\left\{\left.a+\frac{k}{m} a_{0} \right\rvert\, a \in A, 0<k<m\right\}
$$

Define $g^{\prime}: A^{\prime} \rightarrow \mathbb{R}$ by $g^{\prime}\left(a+\frac{k}{m} a_{0}\right)=\left\{x+k x_{0} \mid x \in g(a)\right\}$. Again, $(A, g)<$ $\left(A^{\prime}, g^{\prime}\right)$.
Exercise 3. The relation \leq is completely determined by the condition that $h(A)$ be the least element of A : for $x \leq y$ if and only if x is the least element of $\{x, y\}$, if and only if $x=h(\{x, y\})$. So, let us define $x \leq y$ by $x=h(\{x, y\})$, and show that \leq is a well-order.

First we show that \leq is a partial order:
Since $h(A) \in A$ always (condition ii)), we have $h(\{x, x\})=h(\{x\})=x$, so $x \leq x$ and \leq is reflexive.
Suppose $x \leq y$ and $y \leq z$, so $h(\{x, y\})=x$ and $h(\{y, z\})=y$. Then

$$
\begin{aligned}
h(\{x, z\}) & =h(\{h(\{x, y\}), h(\{z\})\}) \\
& =h(\{h(\{x, y, z\})\}) \\
& =h(\{h(\{x\}), h(\{y, z\})\}) \\
& =h(\{x, y\}) \\
& =x
\end{aligned}
$$

(using condition i) twice) so $x \leq z$ and \leq is transitive.
Finally, if $x \leq y$ and $y \leq x$ then $x=h(\{x, y\})=h(\{y, x\})=y$, so \leq is antisymmetric. We conclude that \leq is a partial order.

For the well-order property, we show that indeed, $h(A)$ is the least element of A, if $A \subseteq L$ is nonempty. For $a \in A$ we have

$$
h(\{h(A), a\})=h(\{h(A), h(\{a\})\})=h(A \cup\{a\})=h(A)
$$

so $h(A) \leq a$ and $h(A)$ is the least element of A.
Exercise 4. The theory of strict posets, in the language $L_{\text {spos }}=\{<\}$, has the axioms:

$$
\begin{gathered}
\forall x y z(x<y \wedge y<z \rightarrow x<z) \\
\forall x \neg(x<x)
\end{gathered}
$$

Call this theory $T_{\text {spos }}$.
Consider the language $L=L_{\text {spos }} \cup\left\{c_{0}, c_{1}, \ldots\right\}$, where the c_{i} are new constants. Let T be the L-theory which has the following axioms:
i) the axioms of $T_{\text {spos }}$
ii) the axioms $c_{i}<c_{i+1}$ for all $i \in \mathbb{N}$
iii) all $L_{\text {spos }}$-sentences which are true in P.

I claim that T is consistent. For this, in view of the Compactness Theorem, we look at a finite subtheory of T. Such a theory is contained in the theory which has the axioms of i) and iii), and finitely many axioms of ii), say $\left\{c_{i}<\right.$ $\left.c_{i+1} \mid 0 \leq i \leq n\right\}$ for some $n \in \mathbb{N}$. Call this theory T_{n}; it is a theory in the language $L_{\text {spos }} \cup\left\{c_{i} \mid 0 \leq i \leq n+1\right\}$.

Now we can make P into a model of T_{n} by picking an ascending sequence $p_{0}<\cdots<p_{n+1}$ in P and defining $c_{i}^{P}=p_{i}$. So every theory T_{n} is consistent; by the Compactness Theorem we conclude that the theory T is consistent. Let Q be a model of T. Then Q is a poset by i), which has an infinite ascending sequence $c_{0}^{Q}<c_{1}^{Q}<\cdots$ by ii), and which satisfies the same $L_{\text {spos }}$-sentences as P, by iii).

Exercise 5
a)

$$
\begin{aligned}
& \begin{array}{r}
{ }^{\dagger} \neg \phi^{1} \quad{ }^{\dagger} \phi^{2} \\
\frac{\perp}{\psi} \perp E \\
\\
\phi \rightarrow \psi
\end{array} I, 2 \\
& \frac{{ }^{\dagger} \neg \exists x(\phi \rightarrow \psi)^{3} \quad \frac{\overline{\phi \rightarrow \psi}}{} \rightarrow I, 2}{\exists x(\phi \rightarrow \psi)} \exists I \quad \neg E \\
& \begin{array}{ccc}
{ }^{\dagger} \neg \exists x(\phi \rightarrow \psi)^{3} & \exists x \psi & \exists x(\phi \rightarrow \psi) \\
\frac{\perp}{\exists x(\phi \rightarrow \psi)} \\
& \\
\hline
\end{array}
\end{aligned}
$$

b)

Exercise 6

a) Call this poset P. Let $\mathcal{C} \subseteq P$ be a chain of L^{\prime}-theories which are conservative extensions of T. We consider $\bigcup \mathcal{C}$. If for some L-sentence ϕ we have $\bigcup \mathcal{C} \vdash \phi$ then since proof trees are finite, there is a finite subset U of $\cup \mathcal{C}$ such that $U \vdash \phi$. By the chain property, there is $T^{\prime \prime} \in \mathcal{C}$ such that $U \subseteq T^{\prime \prime}$. Since $T^{\prime \prime}$ is conservative over T, we see $T \vdash \phi$. We conclude that $\cup \mathcal{C}$ is conservative over T, hence an element of P and therefore an upper bound of \mathcal{C} in P. The poset P satisfies the hypothesis of Zorn's Lemma and has therefore a maximal element.
b) Let U be a maximal element of the poset P of part a). If ψ is an L^{\prime} sentence outside U, then by maximality of U the L^{\prime}-theory $U \cup\{\psi\}$ is no longer conservative over T : there is an L-sentence ϕ such that $U \cup\{\psi\} \vdash \phi$ and $T \nvdash \phi$. Again, there is a finite subset $U^{\prime} \subseteq U$ such that $U^{\prime} \cup\{\psi\} \vdash \phi$; if γ is the conjunction of all elements of U^{\prime}, then $\gamma \wedge \psi \vdash \phi$ and $T \nvdash \phi$.

