Seminar ultracategories: hand-in chapter 4 To be handed in on March 27.

Throughout this exercise, \mathcal{M} is an arbitrary ultracategory, T is a set, and $\{M_t\}_{t\in T}$ is a collection of objects of \mathcal{M} . For $t\in T$, we define the arrow $\underline{M_t} \to (\beta T, \mathcal{O}_{\beta T})$ of $\mathrm{Comp}_{\mathcal{M}}$ to be the map corresponding (via Remark 4.2.6) to $\delta_t \in \beta T$ and

$$\mathcal{O}_{\beta T, \delta_t} = \int_T M_{t'} d\delta_t \xrightarrow{\varepsilon_{T,t}} M_t.$$

(a) Show that these maps exhibit $(\beta T, \mathcal{O}_{\beta T})$ as the coproduct of the collection of objects $\{\underline{M}_t\}_{t\in T}$ in the category $\mathrm{Comp}_{\mathcal{M}}$. [3pt]

Now let T_0 be a subset of T, and write $u: T_0 \hookrightarrow T$ for the inclusion map. We write $u_*: \beta T_0 \hookrightarrow \beta T$ for the corresponding continuous map given by $u_*\nu = \int_{T_0} \delta_{t_0} d\nu$. Observe that this is just the pushforward map along u as provided by Definition 1.1.4. For each $\nu \in \beta T_0$, we have the ultraproduct diagonal map $\Delta_{\nu,u}$, defined as the composition:

$$\int_T M_t d(u_* \nu) = \int_T M_t d\left(\int_{T_0} \delta_{t_0} d\nu\right) \xrightarrow{\Delta_{\mu, \delta_{\bullet}}} \int_{T_0} \left(\int_T M_t d\delta_{t_0}\right) d\nu \xrightarrow{\int_{T_0} \varepsilon_{T, t_0} d\nu} \int_{T_0} M_{t_0} d\nu.$$

We define the natural transformation $\alpha \colon \mathcal{O}_{\beta T} \circ u_* \to \mathcal{O}_{\beta T_0}$ by $\alpha_{\nu} = \Delta_{\nu,u}$ for $\nu \in \beta T_0$.

- (b) Show that $(u_*, \alpha) : (\beta T_0, \mathcal{O}_{\beta T_0}) \to (\beta T, \mathcal{O}_{\beta T})$ is a cartesian morphism of $\text{Comp}_{\mathcal{M}}$. [3pt. Beware: showing that this morphism is cartesian is *not* the difficult part of this exercise.] For $t_0 \in T_0$, we have that $u_*\delta_{t_0} = \delta_{t_0}$.
 - (c) Show that the diagram

$$\int_{T} M_{t} d\delta_{t_{0}} = \int_{T} M_{t} d(u_{*}\delta_{t_{0}}) \xrightarrow{\alpha_{\delta_{t_{0}}}} \int_{T_{0}} M_{t'_{0}} d\delta_{t_{0}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

commutes for every $t_0 \in T_0$. [2pt]

(d) Use the previous exercises to conclude that the map (u_*, α) from exercise (b) is the canonical map $\bigsqcup_{t_0 \in T_0} \underline{M_{t_0}} \to \bigsqcup_{t \in T} \underline{M_t}$ between coproducts. [2pt]