Seminar Ultracategories - Model solution 5

Tim Baanen

Let P be a complete linear order, i.e. a linear order such that all subsets of P have a least upper and greatest lower bound. Note that P, as a poset category, is then also complete, hence it has a categorical ultrastructure.

- 1. Show that the category $Stone_P$ is equivalent to the category with:
- Objects (X, f), where X is a Stone space and $f: X \to P$ is a function such that for all μ there is an $S_0 \in \mu$ and $s \in S_0$ with $f(\int_{s \in S} x_s d\mu) \leq f(x_s)$;
- Arrows $(X, f) \stackrel{\phi}{\to} (Y, g)$ are continuous functions $\phi : Y \to X$ such that for all $y \in Y$, $g(y) \le f(\phi(y))$.

By definition, an object of Stone_P is a Stone space X, together with an ultrafunctor $f: X \to P$. We will show that a map $f: X \to P$ is an ultrafunctor if and only if for all ultrafilters μ there is an s with $f(\int_{s \in S} x_s \, \mathrm{d}\mu) \le f(x_s)$. Since all diagrams in P commute and there are no nontrivial arrows in X, f is an ultrafunctor if and only if for all $\{x_s\}_{s \in S}$ we have $f(\int_{s \in S} x_s \, \mathrm{d}\mu) \le \int_{s \in S} f(x_s) \, \mathrm{d}\mu$. Thus, we need to check that the given condition is equivalent to $f(\int_{s \in S} x_s \, \mathrm{d}\mu) \le \int_{s \in S} f(x_s) \, \mathrm{d}\mu$. In the case that P is finite, we have $f(\int_{s \in S} x_s \, \mathrm{d}\mu) \le \int_{s \in S} f(x_s) \, \mathrm{d}\mu$ for all $x: S \to X$ and $\mu: \beta S$, then we have $\int_{s \in S} f(x_s) \, \mathrm{d}\mu = \max_{S_0 \in \mu} \min_{s \in S_0} f(x_s)$, so we can simply take the corresponding S_0 and s, and get the equivalence.

Now we need to extend this to an arbitrary linear order P. Given $\mu \in \beta S$ and $x: S \to X$, and let f be an ultrafunctor. We want to show there is an $s \in S$ with $f(\int_{s \in S} x_s \, \mathrm{d}\mu) \leq f(x_s)$. Since the principal ultrafilters are dense in βS , we can write μ as the limit of principal ultrafilters $\{\delta_n\}$. Consider the map $\int_{s \in S} x_s \, \mathrm{d}\underline{\ }: \beta S \to X$. This is a continuous map between compact Hausdorff spaces, so its image is closed. Let $\{x_n\}$ be the sequence given by applying this map to each δ_n , then this will also converge to $\int_{s \in S} x_s \, \mathrm{d}\mu$. Moreover, for each n we have $f(\int_{s \in S} x_s \, \mathrm{d}\delta_n) \leq f(x_n)$ since f is an ultrafunctor. Note that it does not really make sense to take the limit of $f(x_n)$ since that would mix the concept of topological limit with the concept of limit in orders. We can fix this by considering the limit supremum, $\limsup_{n \in \mathbb{N}} x_n$ (since the topology on P for which limits coincide with suprema is the topology of upsets A_P from the next exercise). Let y_n be the subsequence (allowing repetitions) of x_n occurring in the limit supremum, then it is a subsequence of a converging sequence in a closed subspace of a compact Hausdorff space. Thus, it converges to some point of this closed subspace (not necessarily the same if y_n remains constant for large enough n), which is exactly the x_s that we are looking for (and we can take S_0 to be S itself).

For the converse, suppose $f(\int_{s \in S} x_s \, \mathrm{d}\mu) > \int_{s \in S} f(x_s) \, \mathrm{d}\mu$. Since the ultraproduct is a supremum over the elements of μ , we also have $f(\int_{s \in S} x_s \, \mathrm{d}\mu) > \prod_{s \in S_0} f(x_s)$ for all $S_0 \in \mu$. The product in a poset is the greatest lower bound, and we have a strict inequality, we have $f(\int_{s \in S} x_s \, \mathrm{d}\mu) > f(x_s)$ for $x_s \in S_0$, which is exactly the negation of the condition $f(\int_{s \in S} x_s \, \mathrm{d}\mu) \le f(x_s)$. For arrows, the conditions for $(\phi, \alpha) : (X, f) \to (Y, g)$ in Stone_P state that $\phi : Y \to X$ is a continuous

For arrows, the conditions for $(\phi, \alpha) : (X, f) \to (Y, g)$ in Stone_P state that $\phi : Y \to X$ is a continuous function, and that α is a natural transformation of ultrafunctors $g \Rightarrow f \circ \phi$, which is just a natural transformation that commutes with the ultrastructures on the two functors. Since Stone spaces have only trivial arrows and all diagrams in P commute, this means that at each object $y \in Y$ we have an arrow from g(y) to $f(\phi(y))$. This is exactly the condition that we require.

2. Let A_P be the topology on P where a set $U \subseteq P$ is open iff it is an upset (i.e. $x \in U$ and $x \le y$ imply $y \in U$). Show that $Shv(A_P)$ is equivalent to $Fun(P, \mathbf{Set})$.

Let $\mathcal{F}: A_P^{\mathrm{op}} \to \mathsf{Set}$ be a sheaf, then we can define a functor $F: P \to \mathsf{Set}$ as follows: Given an object $x \in P$, define $\uparrow(x) = \{y \mid y \geq x\}$, and note that this is indeed open in A_P . We set $F(x) = \mathcal{F}(\uparrow(x))$. Given an arrow $x \leq y$ in P, by transitivity of the order we have that $\uparrow(y) \subseteq \uparrow(x)$. Applying \mathcal{F} to this inclusion gives an arrow in the opposite direction $F(x) = \mathcal{F}(\uparrow(x)) \to \mathcal{F}(\uparrow(y)) = F(y)$. Note that \mathcal{F} being a presheaf implies that F is a functor. Any natural transformation $\mathcal{F} \Rightarrow \mathcal{G}$ will give rise to a natural transformation of the corresponding functor, since the functor is essentially a restriction of the sheaf.

For the opposite direction, let $F: P \to \mathsf{Set}$ be a functor, then we want to find a sheaf $\mathcal{F}: A_P^{\mathsf{op}} \to \mathsf{Set}$. Note that a basis of A_P is given by all the upsets of the form $\uparrow(x) = \{y \mid y \geq x\}$, together with the empty set, since any upset U is equal to $\bigcup_{x \in U} \uparrow(x)$. Thus, it suffices to specify \mathcal{F} on this basis to get a sheaf up to natural isomorphism, so we set $\mathcal{F}(\emptyset) = \top$ for some choice of terminal object \top , and $\mathcal{F}(\uparrow(x)) = F(x)$. For the arrows to $\mathcal{F}(\emptyset)$ we take the unique maps to the terminal object (which automatically satisfy the sheaf axioms), and for other arrows $\mathcal{F}(\uparrow(x)) \to \mathcal{F}(\uparrow(y))$ for $\uparrow(y) \subseteq \uparrow(x)$, we note that $y \in \uparrow(y) \subseteq \uparrow(x)$ implies $x \leq y$, so we can take the arrow $F(x \leq y) : F(x) = \mathcal{F}(\uparrow(x)) \to \mathcal{F}(\uparrow(y)) = F(y)$. This gives a presheaf since we can just extend the proof that F is a functor with the fact that the maps to the terminal object \top are unique. Moreover \mathcal{F} is a sheaf, since any open cover of a basic open $\uparrow(x)$ must contain $\uparrow(x)$ itself, so the locality and gluing axioms are automatically satisfied. By uniquely extending a given natural transformation $F \Rightarrow G$, we find a map of sheaves $\mathcal{F} \Rightarrow \mathcal{G}$.

It remains to show that these constructions are pseudo-inverses to each other. If we start with a functor $F: P \to \mathsf{Set}$, construct a sheaf, then go back to a functor, we get exactly the same functor back. On the other hand, if we start with a sheaf \mathcal{F} , then apart from \emptyset we restrict \mathcal{F} to the basis consisting of sets of the form $\uparrow(x)$, and then extend it uniquely, up to natural isomorphism, back to \mathcal{F}' . This new sheaf is isomorphic to \mathcal{F} except perhaps in its component at \emptyset . However, by the sheaf axioms, since \emptyset is an initial object, we have that $\mathcal{F}(\emptyset)$ is terminal (and $\mathcal{F}'(\emptyset)$ is terminal by construction). Thus we can find an isomorphism of sheaves from \mathcal{F} to \mathcal{F}' , which sends one terminal object to another, and leaves other components in place.

3. Show that all functors in $Fun(P, \mathbf{Set})$ have a left ultrastructure.

Here I will use a nice argument given by Bart and Matteo. Given $F:P\to \mathsf{Set}$, we find a left ultrastructure on F using Proposition 1.4.9. Suppose we have $M:S\to P$ and $\mu:\beta S$, we want to show that the maps $F(q_\mu^{S_0}):F(\prod_{s\in S_0}M_s)\to F(\int_{s\in S}M_s\,\mathrm{d}\mu)$ exhibit $F(\int_{s\in S}M_s\,\mathrm{d}\mu)$ as the colimit of the diagram consisting of all $F(\prod_{s\in S_0}M_s)$. Note that in P, we have that $q_\mu^{S_0}$ is just the inequality $\prod_{s\in S_0}M_s \leq \int_{s\in S}M_s\,\mathrm{d}\mu$. Sending this through the equivalence of the previous exercise, we find a sheaf $\mathcal F$ on A_P , and we want

Sending this through the equivalence of the previous exercise, we find a sheaf \mathcal{F} on A_P , and we want to know whether $\mathcal{F}(\uparrow(\int_{s\in S}M_s\,\mathrm{d}\mu)\subseteq\uparrow(\prod_{s\in S_0}M_s))$ form the colimiting cocone over the diagram of all $\mathcal{F}(\uparrow(\prod_{s\in S_0}M_s))$ for $S_0\in\mu$. Since the inclusion between sets $\uparrow(x)$ of A_P just form the dual category to P itself, and by completeness of P, colimits in P are sent to limits and A_P , we have that $\uparrow(\int_{s\in S}M_s\,\mathrm{d}\mu)$ is the limit of the diagram $\uparrow(\prod_{s\in S_0}M_s)$ for $S_0\in\mu$. Using the fact that sheaves send limits in A_P to colimits in Set, we conclude that $F(q_\mu^{S_0})$ exhibits $F(\int_{s\in S}M_s\,\mathrm{d}\mu)$ as the colimit of the diagram consisting of all $F(\prod_{s\in S_0}M_s)$, so F has an ultrastructure.

4. Can we conclude that $\operatorname{Fun}^{\operatorname{LUlt}}(P,\operatorname{Set})$ is equivalent to $\operatorname{Shv}(A_P)$?

This is the case if and only if each functor $F: P \to \mathsf{Set}$ has a left ultrastructure that is unique up to natural isomorphism of left ultrafunctors. By Proposition 1.4.9 and the result of the previous exercise, this happens exactly when all ultrafunctors F, σ_{μ} have the property that for all $\mu \in \beta S$ and $S_0 \in \mu$, the following diagram commutes up to natural isomorphism of σ_{μ} :

$$F(\prod_{s \in S_0} M_s) \longrightarrow \prod_{s \in S_0} F(M_s)$$

$$\downarrow^{F(q_{\mu}^{S_0})} \qquad \qquad \downarrow^{q_{\mu}^{S_0}}$$

$$F(\int_{s \in S} M_s \, \mathrm{d}\mu) \stackrel{\sigma_{\mu}}{\longrightarrow} \int_{s \in S} F(M_s) \, \mathrm{d}\mu.$$

Following the previous exercise, we can assume that F arises from restricting a sheaf \mathcal{F} on A_P to the basis that corresponds to P itself, and again use that sheaves send limits in A_P to colimits in Set , we want to know whether the following diagram commutes up to natural isomorphism of σ_{μ} :

$$\mathcal{F}(\uparrow \left(\int_{s \in S} M_s \, \mathrm{d}\mu \right)) \xrightarrow{\sigma_{\mu}} \varinjlim_{S_0 \in \mu} \prod_{s \in S_0} \mathcal{F}(\uparrow (M_s))$$

$$\downarrow \sim \qquad \qquad \qquad \qquad \downarrow \lim_{S_0 \in \mu} \mathcal{F}(\uparrow \left(\prod_{s \in S_0} M_s \right)) \qquad ,$$

where $\phi_{S_0}: \mathcal{F}(\uparrow(\prod_{s\in S_0}M_s)) = F(\prod_{s\in S_0}M_s) \to \prod_{s\in S_0}F(M_s) = \prod_{s\in S_0}\mathcal{F}(\uparrow(M_s))$ is the canonical map switching the order of functor and product.

First, we will show the diagram commutes for principal ultrafilters $\mu = \delta_s$. In that case, we have that $\int_{s \in S} M_s d\delta_s = M_s$, so we have the following diagram:

which commutes due to the ultrastructure axioms.

Since ultraproducts are dense in βS , write an arbitrary ultraproduct μ as $\mu = \int_{s \in S} \delta_s \, \mathrm{d}\mu$. Next, we extend S by adjoining a new element *, and set $m_* = \prod_{s \in S_0} M_s$. The inclusion $S \hookrightarrow S \cup \{*\}$ gives rise to a monomorphism $\beta S \hookrightarrow \beta(S \cup \{*\})$, where the image of a principal ultrafilter δ_s is just the corresponding principal ultrafilter δ_s (on a larger powerset), while the image of μ is $\mu_* = \int_{s \in S} \delta_s' \, \mathrm{d}\mu$ (with δ_s' a principal ultrafilter on $S \cup \{*\}$). We extend a given $M: S \to P$ to $S \cup \{*\}$ by setting $M_*' = \prod_{s \in S_0} M_s$. Since it is a principal ultrafilter, σ_{δ_*} makes the diagram for M' commute. By construction, we also have that σ_{μ_*} makes the following diagram commute, for S_0 specifically:

$$F(\prod_{s \in S_0} M_s) = F(M'_*) \longrightarrow \prod_{s \in S_0} F(M_s)$$

$$\downarrow^{F(q_{\mu_*}^{S_0})} \qquad \qquad \downarrow^{q_{\mu_*}^{S_0}}$$

$$F(\int_{s \in S} M_s \, d\mu_*) \xrightarrow{\sigma_{\mu_*}} \int_{s \in S} F(M_s) \, d\mu_*.$$

(where we use that M' restricted to a subset of S is just M). Applying the Fubini transform to $\mu = \int_{s \in S} \delta_s \, \mathrm{d}\mu$ and $\mu_* = \int_{s \in S} \delta_s' \, \mathrm{d}\mu$, we find that this defines σ_μ up to natural isomorphism as σ_{μ_*} , which was unique by Proposition 1.4.9.

Thus, we conclude that the left ultrastructures on a functor $F: P \to \mathsf{Set}$ are unique up to isomorphism, which means that $\mathsf{Fun}^{\mathsf{LUlt}}(P, \mathsf{Set})$ is indeed equivalent to $\mathsf{Shv}(A_P)$.